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Abstract

Exogenous disturbances such as occupancy and weather strongly affect the per-
formance of grid-interactive buildings, making accurate probabilistic forecasting
essential for robust control. We propose a new MQF2-TFT architecture that cap-
tures both temporal and cross-variable dependencies for multi-horizon disturbance
forecasting. To integrate forecasts into stochastic MPC, we develop a quantile-
based sample method that enforces chance constraints despite non-Gaussianity.
Experiments with real office building data demonstrates improved key performance
indicators over baselines.

1 Motivation

Exogenous disturbances such as occupancy and outdoor conditions have a significant effect on
building thermal dynamics and grid interactivity, affecting key performance indicators (KPIs) such as
energy consumption. To design performant building energy management systems (BEMS) based
on predictive control paradigms, it is critical to obtain accurate forecasts of these disturbances.
Probabilistic forecasting enables robust decision-making (as opposed to deterministic) by comput-
ing policies that are uncertainty-aware: aware of statistics around the mean/median disturbance
forecast [25, 13, 28].

While a variety of probabilistic forecasting models have been proposed, ranging from Gaussian
processes to deep autoregressive models, the temporal fusion transformer (TFT) has emerged as
particularly well-suited for applications requiring medium-to-long horizon forecasts [10]. This is
because the TFT combines attention-based mechanisms for capturing long-range temporal dependen-
cies with gating mechanisms that enable selective conditioning on relevant historical inputs. These
features are especially valuable for BEMS, where disturbance trajectories such as occupancy or solar
irradiance exhibit strong temporal patterns at daily and weekly scales. However, the classical TFT
formulation produces forecasts independently across disturbance variables, and therefore cannot
fully capture the strong inter-variable dependencies inherent to building dynamics: for example,
correlations between human occupants and internal heat gains, or between ambient temperature and
cooling capacity. To address this limitation, we augment the TFT with the multivariate quantile
function forecaster (MQF2) [7]. MQF2 enables generative multi-variate forecasts by learning the
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joint quantile function across all disturbance variables, thereby complementing the TFT. The TFT
learns temporal dependencies, while MQF2 explicitly learns cross-variable dependencies at each
horizon.

A major challenge arises when integrating these forecasts into the SMPC optimization problem.
SMPC often relies on chance-constrained optimization to ensure that operational constraints are
satisfied with high probability. Standard formulations of SMPC usually assume Gaussian disturbances
or employ scenario-based sampling to ensure the underlying robust optimal control problem is
tractable. However, oversimplifying assumptions can fail to capture the skewed and multi-modal
distributions of building disturbances; furthermore, scenario-based methods exhibit prohibitive
sampling requirements at week-long or month-long prediction horizons. Instead, quantile-based
formulations organically allow explicit control over risk levels in chance constraints without requiring
Gaussian assumptions [27]. Therefore, we adopt a quantile-based SMPC approach that is informed
by the MQF2-TFT, which enforces chance constraints directly using scenarios auto-regressively
generated from the forecast distribution. This preserves tractability while faithfully leveraging the
expressive non-Gaussian forecasts. Further relevant works are listed in Appendix A.

Contributions. The main contribution of this work is to bridge transformer-based probabilistic
forecasting with SMPC, enabling expressive disturbance models to directly inform GEB control. In
addition, we propose: (i) a quantile-driven formulation using the MQF2-augmented TFT that captures
complex, non-Gaussian disturbance distributions while avoiding restrictive Gaussian assumptions
or large-scale scenario sampling; (ii) an autoregressive feedback mechanism within MQF2-TFT to
generate consistent multivariate scenarios across long horizons; and, (iii) we validate the proposed
SMPC framework on real-world grid-interactive efficient building (GEB) data, demonstrating reduced
energy costs and occupant discomfort relative to Gaussian and vector autoregressive baselines.

2 Methodology

GEB Dynamics. We consider the problem of the control of a GEB with photovoltaics and battery
storage; see Appendix B for more details. The control inputs ut = [Php, Pbatchg , Pbatchg ] are the heat
pump capacity and the charge/discharge power of the battery, respectively. Exogenous disturbances
are denoted wt = [Tamb, I, Pint], which are the ambient temperature Tamb, solar irradiance I and
internal (sensible) heat loads Pint, respectively. The control inputs and disturbances impact the
internal temperature of the building Tin and the state-of-charge of the battery Qbat. The grid is
treated as an infinite bus, and interactivity is modeled by a conservation equation. The primary
objectives of the controller are to keep the internal temperature Tin within a comfortable range
Tmin
in ≤ Tin ≤ Tmax

in , while reducing the amount of energy bought from the grid: by relying on the
GEB’s internal solar energy capture and storage mechanisms.

Forecasting Model. The goal of the forecasting model is to predict the distribution of the future
disturbances conditioned on past disturbances and on known covariates. That is, it approximates the
true conditional distribution,

P(wt+1:t+H |w1:t, c1:t+H) ≈ f(wt+1:t+H ;wt−k:t, ct−k:t+H) (1)

where wt+1:t+H are the future disturbances, wt−k:t are the past disturbances, ct−k:t+H are known
covariates, H is the prediction window, and k is the look-back window. Note that wt ∈ R3

≥0. Our
approximator (1) combines the TFT architecture [10] with the MQF2 architecture [7]. As opposed
to the the TFT architecture alone, which only provides univariate quantile forecasts, this proposed
architecture allows for generative multi-variate forecasting while maintaining the advantages of TFT.
More precisely, we use the TFT architecture augmented with an autoregressive feedback, to provide a
horizon-specific latent hτ , i.e.,

hτ = Fθ(wt−k:t, ct−k:t+τ , ŵt+1:t+τ−1, τ), τ = 1, ..,H,

where ŵt+1:t+τ−1 are the forecasts from the previous horizons. A shared MQF2 conditional decoder
then uses this latent hτ to generate a joint forecast sample across all disturbance variables, rather
than treating each channel as independent. That is,

ŵt+τ = gϕ(hτ , α), α ∼ U([0, 1]m).

By combining autoregressive feedback with the MQF2 decoder, the model learns correlations both
across variables and over time, enabling coherent multivariate trajectories. We refer to Appendix C

2



for additional details on the model and training hyperparameters, and to our comparative study
demonstrating that AR-TFT-MQF2 generally exhibits better distributional learning than vanilla TFT.

Quantile-SMPC. We propose a SMPC policy for GEB control that uses the samples from the
forecasting model to enforce constraint satisfaction. Standard SMPC approaches (e.g. [12]) choose
the next control input by solving a chance-constrained program enforcing high-probability constraint
satisfaction on future states, i.e.,

min
x̂,u

E [J(x̂,u)] (2a)

subject to : P (Cx̂τ ≤ Tmax
in ) ≥ p, ∀ τ ∈ [t, t+N ] (2b)

P
(
Cx̂τ ≥ Tmin

in

)
≥ p, ∀ τ ∈ [t, t+N ] (2c)

x̂τ+1 = Ax̂τ +Buτ +Gŵτ , ∀ τ ∈ [t, t+N − 1], x̂τ = xt (2d)
(ŵt, ..., ŵt+N−1) ∼ f, (2e)

where xt is the current state, x̂τ are the predicted states under the linear dynamics in (2d) and the prob-
abilistic disturbance forecast (ŵt, ..., ŵt+N−1) ∼ f , J is the performance-based cost function, and
the bold variables denote the concatenation at all time steps; x̂ = [x̂⊤

t , ..., x̂
⊤
t+N ],u = [u⊤

t , ..., u
⊤
t+N ].

Given the linear dynamics, the internal temperature is encoded as Tin = Cxt, and therefore (2b)
enforces the temperature comfort constraints with high probability.

Unfortunately, we cannot solve (2) directly, because our forecasting model f does not have a tractable
analytic representation and therefore we cannot compute the chance constraints (2b). To circumvent
this, we use an approach that enforces the chance-constraints using only scenarios or samples drawn
from the forecasting model. To illustrate our approach, we first point out that (2b) can be written
explicitly in terms of the control inputs u (see Appendix D.1 for details):

Pŵ∼f (S
x
τ xt + Su

τ u+ Su
τ ŵ ≤ Tmax

in ) ≥ p and Pŵ∼f (S
x
τ xt + Su

τ u+ Su
τ ŵ ≥ Tmin

in ) ≥ p. (3)

Then, leveraging the approach from [27], we draw samples from the forecasting model and use these
to compute the empirical quantile function of Su

τ ŵ, denoted by Q̂Su
τ ŵ(·). This empirical quantile

function is then used to define deterministic constraints that enforces (2b) conservatively,

Sx
τ xt + Su

τ u+ Q̂Su
τ ŵ(∆) ≤ Tmax

in and Sx
τ xt + Su

τ u+ Q̂Su
τ ŵ(1−∆) ≥ Tmin

in , (4)

where ∆ is an appropriately chosen probability threshold. In particular, we choose ∆ = p+
√

ln(1/β)
2M

for M samples, which was shown by [27] to ensure that the empirical quantile constraint on u in (4)
is a sufficient condition for the exact chance constraints in (2b) with probability at least 1− β. The
complete pseudocode for our proposed SMPC algorithm is provided in Appendix D.2.

3 Results

Baselines. We compare our proposed approach with the following SMPC baselines. The implemen-
tation details of these baselines are given in Appendix E. Gaussian: Computes the SMPC policy
with the disturbances taken to be iid Gaussian, with empirical mean and covariance from historical
data. VAR: Computes the SMPC policy with the disturbances taken to be generated by a vector
autoregressive (VAR) model with the same context length as our proposed model. Cantelli: Uses the
same forecasting model as the proposed approach, but enforces the chance constraints with Cantelli’s
inequality using the empirical mean and variance of the forecasting samples; c.f. [5, 16].

Experimental Setup. We use a linear thermal dynamics model for the GEB; this is detailed in
Appendix B. A real disturbance dataset for 2021-2024 measured at the Mitsubishi Electric SUSTIE
building is used for both training and as ground-truth disturbances for simulation. The SUSTIE
building is a next-generation commercial office building located in Japan [1]. The proposed and
baseline models are trained using the data from 2021–2022, and the simulations use data from 2023.
We simulated the proposed algorithms and baselines for four different representative weeks during
each of the seasons in 2023: Jan 23-Jan 30 (Winter), April 24-April 30 (Spring), Jul 17-Jul 23
(Summer), Oct 23-Oct 30 (Fall). The details on the disturbance data and simulation setup are given in
Appendix F.
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Winter / Jan 2023 Spring / April 2023 Summer / Jul 2023 Fall / Oct 2023

Algorithm TD Cost TD Cost TD Cost TD Cost

Gaussian 3.26 −16.01 9.66 6.02 21.14 19.48 16.86 14.60
VAR 1.04 −16.90 1.73 −2.39 2.03 10.15 2.90 6.02
Cantelli 0.10 −13.98 0.02 −1.97 0.06 9.78 0.17 5.16
Quantile 0.47 −17.88 0.43 −3.33 0.66 8.97 0.36 3.49

Table 1: Simulation results and baseline algorithms across seasonal test weeks. The best in each column is set
in bold and the second best is underlined. Thermal discomfort (TD) is in units of deg-C·hr and cost is in scaled
currency units. A negative cost implies no grid interaction; i.e. self-sustained operation.

Figure 1: Trajectories of the proposed and baseline algorithms for an example day (Oct 2023). The
temperature constraints are shown as a black line on the internal temperature Tin plot.

Simulation Results. The simulation results are shown in Table 1. These results are reported in
terms of the net cost of electricity bought and sold from the grid (in scaled units) where negative
cost indicates a net profit; and thermal discomfort (TD): the cumulative violation of the comfort
constraints in units of Celsius-hours. In comparison to the baselines, our proposed algorithm (labeled
Quantile) is either first or second for every metric and week tested. This balancing of cost and thermal
discomfort was not matched by any of the baselines.

We also show the trajectories of the algorithms and the disturbances for an example day in Figure 1.
This plot illustrates how Cantelli stays farther from the constraint boundary than Quantile, at the
expense of greater heat pump use and electricty costs. This is despite the fact that both Cantelli
and Quantile are using the same forecasting model, confirming that the Cantelli approach is a more
conservative way to estimate the chance-constraints from forecast samples. Furthermore, Figure 1 also
shows that Gaussian and VAR have a significant amount of constraint violation, which is consistent
with the results in Table 1. This is likely due to the Gaussian and VAR disturbance models being
unable to capture the true distribution of the disturbances.

Across all seasons (see Appendix G for supporting empirical evidence), we observe a clear trade-
off between thermal comfort and operational cost, with uncertainty-aware methods consistently
outperforming naive baselines. Gaussian assumptions lead to frequent violations of comfort bounds
(up to 21 deg-C·hr in summer) as they underestimate forecast uncertainty and overdraw storage, while
VAR achieves low cost but at the expense of sustained discomfort. In contrast, Cantelli’s inequality-
based controller nearly eliminates discomfort (≤0.2 deg-C·hr across seasons) while maintaining
competitive cost, reflecting a conservative but safe strategy that leverages thermal inertia and avoids
aggressive battery cycling. Our proposed quantile method provides the best overall balance, delivering
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the lowest cost in three of four seasons while keeping discomfort low (0.4–0.7 deg-C·hr), effectively
timing heat pump operation and battery discharge to align with solar availability and peak loads.
Single-day trajectories confirm these patterns: robust controllers act proactively by pre-cooling or
pre-heating during off-peak hours, and reserving battery charge for midday stress periods, whereas
Gaussian control depletes flexibility too early and reacts too late. Together, these results highlight that
our risk-aware optimization provides a principled way to exploit building thermal mass and on-site
storage, simultaneously safeguarding comfort and shaving operational cost.
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A Related Work

A.1 Probabilistic time-series forecasting

Modern multi-horizon forecasting has shifted from point estimates to calibrated predictive distri-
butions, with deep sequence models now standard. Temporal Fusion Transformers (TFT) unify
attention with gating for interpretable, high-accuracy multi-horizon forecasts and natively support
quantile training [10]. Autoregressive recurrent approaches such as DeepAR established scalable
likelihood-based density forecasting on large related series [22], while deep state-space models learn
latent probabilistic dynamics amenable to principled uncertainty propagation [17]. Transformer
variants optimized for long contexts improve efficiency for extended horizons; e.g. Informer [30] and
FedFormer [31] report good results on energy system-relevant time-series.

Most relevant for our work, multi-variate probabilistic forecasters aim to model the full joint uncer-
tainty across variables rather than predicting each series in isolation. Import multivariate architectures
include: copula-based models [21], which uses a Gaussian copula to represent dependencies between
variables; flow-based models [19], which uses conditional normalizing flow trained with negative log
likelihood minimization; and diffusion-based models [18, 29], which generate future paths by itera-
tively denoising at each step. Our proposed multi-variate forecasting model builds on the Multivariate
Quantile Function Forecastor (MQF2) architecture [10], which handles multivariate distributions by
using the gradient of an input-convex neural network to represent the multi-variate quantile function
and is trained via energy score (although it can also be trained with conditional flows). We use the
MQF2 as a distribution head on top of a TFT, which allows for multi-variate probabilistic forecasting
while maintaining the benefits of the TFT architecture, such as robust handling of heterogeneous
covariates and step-wise variable selection.

A.2 Stochastic MPC with disturbance forecasting

SMPC is a version of the classical MPC algorithm that explicitly models the impact of random
disturbances on the system state when solving the constrained optimal control problem. Typically,
constraint satisfaction is enforced with high probability with respect to possible state realizations,
i.e. via chance-constraints. Most works within this vast literature assume that the disturbances
are Gaussian [12], which is often insufficient to accurately model the disturbances in BEMS. One
popular approach to circumvent the assumption of Gaussianity is to use the the Cantelli inequality
to construct conservative bounds on the chance-constraint with only the mean and variance of the
disturbance distribution, e.g. [8, 5, 16]. This is different from the empirical quantile-based SMPC
approach that we adopt from [27], which directly estimates the chance-constraints through samples
and guarantees high-probability satisfaction of chance-constraints for arbitrary distributions. In our
BEMS simulations, we find that the quantile-based approach more effectively balances constraint
satisfaction and cost minimization than the Cantelli inequality-based approach.

Another direction for handling non-Gaussian disturbances in SMPC is the so-called scenario approach,
in which several disturbance sequences are sampled and then the constraint are enforced with respect
to all of these sequences or a selected subset of them, e.g. [3, 24, 20, 25]. Although the scenario
approach guarantees constraint satisfaction with high probability after so many samples, it is often
conservative with respect to the constraints [12]. It can also be computationally expensive, as it
requires a duplicate set of optimization constraints for every sampled trajectory, versus the quantile-
based SMPC that we use, which only requires the original constraints. We leave an empirical
comparison between quantile and scenario-based SMPC in BEMS as future work.

A.3 GEB system management and control with SMPC

GEBs coordinate flexible end uses, energy storage, and on-site generation to provide both building-
level performance and grid services. The U.S. DOE’s national roadmap frames GEBs as a controls
problem at scale, emphasizing load flexibility, interoperability, and valuation of services [23]. At
the controller level, MPC/SMPC has been repeatedly validated for HVAC energy efficiency and
comfort, and extended to grid services. Early building SMPC studies quantified efficiency gains and
comfort-risk trade-offs using weather forecasts [14], while follow-ons targeted tractable formulations
for large systems and probabilistic constraints [15]. Aggregations of commercial buildings have been
shown capable of reliable frequency-reserve provision under robust/SMPC formulations with energy
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constraints [9, 6]. Comprehensive surveys document MPC/SMPC adoption across buildings, storage,
and DER coordination, and summarize modeling and deployment hurdles (identification, uncertainty
modeling, computational tractability, and KPI alignment) [4].
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B GEB Model Description

Figure 2: Illustration of building model.

Table 2: Building model parameters.

Parameter Value Parameter Value

Cwext 1.18× 107 Cwint 1.18× 107

Cin 6.66× 105 Citm 1.63× 107

Rwall 45× 10−3 Rroof 54× 10−2

Rfloor ∞ Rwind 1× 10−1

Rdoor 19× 10−2 Rwint 71× 10−4

Ri 22× 10−4 f 0.30
ηheat 3.50 ηcool 2.70
ηsol 0.19 ηch, ηdis 0.93× 10−6

Fwext→win 0.50 Froof→in 0.20
Fwin→in 0.30 αwext 0.13
αroof 0.05 hroof 3.45
hwext 20.0 Awext 52.2
Awind 6.10 Aroof 65.9
Npv 25 Apv 1.685 sq. m.
Noct 50 Tstc 25.0 deg-C
ηstc 0.19 ηl&t 0.90
ηT 0.005 Tnoc 25.0 deg-C

We use the building model from [26], which we restate in the following. An illustration of this model
is shown in Figure 2. The model parameter values are shown in Table 2.

B.1 5-State Model of Thermal Dynamics

The thermal model consists of a single thermal zone and represent the envelope with a four-node
RC network. The state collects the exterior and interior wall temperatures (Twext , Twint), the zone air
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temperature Tin, and the lumped internal thermal mass Titm. The manipulated input is the heat pump’s
delivered heating/cooling rate Php. Exogenous signals are (i) ambient air temperature Tamb, (ii)
shortwave irradiance I that drives solar gains, and (iii) internally generated heat Pint from equipment
and occupants. The resulting continuous-time dynamics are

Cwext Ṫwext =
3

Rwall
(Tsaw + Twint − 2Twext) (5a)

Cwint Ṫwint =
3

Rwall
(Twext + Tsin − 2Twint) (5b)

CinṪin =
Tamb − Tin

Rwind
+

Tamb − Tin

Rdoor
+

Tsin − Tin

Rwint

(5c)

+
Titm − Tin

Ri
+

Tsar − Tin

Rroof
− Php + Pint + Psolin

CitmṪitm =
Tin − Titm

Ri
+

Tgrnd − Titm

Rfloor
+ Psolitm , (5d)

where Cwext , Cwint , Cin, Citm are thermal capacitances and Rdoor, Rwall, Rwint , Rwind, Ri, Rfloor, Rroof

are the corresponding resistances. When the floor is effectively insulated we take Rfloor = ∞, which
removes the dependence on ground temperature Tgrnd. The inner wall surface temperature Tsin

balances conduction through the wall and exchange with the zone air, while effective outer-surface
temperatures Tsaw and Tsar account for the effect at the exterior wall and roof, respectively. These
relate to the other variables as,

(Twint − Tsin)/(Rwall/3) = (Tsin − Tin)/Rwint , (6a)
Tsaw = (αwext)/(hwext)FwextI + Tamb, (6b)
Tsar = (αwroof

)/(hwroof
)Fwroof

I + Tamb. (6c)

The impact of the solar radiation on the space is modeled as,

Psolwind = AwindFwindηsolI, (7)

which we partition between the air and internal mass via a fixed fraction f ∈ [0, 1]:

Psolin = fPsolwind , Psolitm = (1− f)Psolwind . (8)

B.2 Battery/PV subsystem

In addition to thermal actuation, the site can exchange electrical energy using a battery and PV array.
We model the battery state-of-charge proxy Qbat with integral charge/discharge dynamics,

Q̇bat = ηbatchgPbatchg −
Pbatdis

ηbatdis
, (9)

subject to mutually exclusive operating modes at each instant,

Pbatchg = 0 or Pbatdis = 0, (10)

with distinct charge/discharge efficiencies ηbatchg , ηbatdis .

B.3 Discretization.

Using zero-order hold with sampling time ∆t, a linear, time-invariant, discrete-time model of the
augmented state is obtained, i.e.,

xt+1 = Axt +But + Fwt, (11)

where xt = [Twext , Twint , Tin, Titm, Qbat], ut = [Php, Pbatchg , Pbatdis ], and wt = [Tamb, I, Pint]. The
matrices A,B, F follow from (5)–(9).
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B.4 Grid interaction

Let Pbuy denote the net grid exchange at each time step,

Pbuy =
(
Pbatchg + |Php|

)︸ ︷︷ ︸
power consumed

− (Pbatdis + Ppv)︸ ︷︷ ︸
power produced

. (12)

Here, Ppv is the instantaneous power produced by the photovoltaic (PV) array. We represent Ppv as

Ppv = NpvApvηstcηl&tI

[
1−

(
ηT

(
Tamb +

Tnoc − 20

800
I − Tstc

))]
, (13)

where Npv is the number of panels, each with area Apv; ηstc is the module efficiency under Standard
Test Conditions (STC) and ηl&t captures aggregate balance-of-system losses. The output scales with
irradiance I and is de-rated by temperature effects inside the brackets, which depend on ambient
temperature Tamb, the Nominal Operating Cell Temperature (NOCT) Tnoc, the STC reference Tstc,
and a temperature coefficient ηT. The NOCT-based term provides a simple proxy for cell temperature
under non-STC irradiance.
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C Forecasting Model Details

In the following, we describe the components of our proposed forecasting model, and provide an
empirical comparison with vanilla TFT. The hyperparameters are given in Table 3. The model was
trained on 12 GB GPUs.

Table 3: Hyperparameters for the proposed forecasting model.

Component Hyperparameter Value

Windowing look-back (k) 768
horizon (H) 96

AR-TFT

hidden size 64
num lstm layers 1
num attention heads 8
dropout 0.2

PICNN (in MQF2)
latent dimension 3×13
hidden size 32
num layers 4

Training

optimizer AdamW
learning rate 1× 10−4

batch size 16
num epochs 10
num energy score samples 50

C.1 TFT with Autoregressive Feedback (AR-TFT)

We use a modified version of the standard TFT architecture [10] that incorporates autoregressive
feedback, which we call AR-TFT. In particular, for each horizon τ , the decoder input is both the
covariate and a feedback term (ct+τ , w̄t+τ−1), instead of just the covariate ct+τ as in the standard
TFT. For training, the feedback term w̄t+τ−1 is taken to be the target value at the previous horizon
(i.e. w̄t+τ−1 = wt+τ−1) and, for inference, the feedback term is taken to be the forecast sample at
the previous horizon (i.e. w̄t+τ−1 = ŵt+τ−1). This modified TFT architecture is used to output a
horizon-specific latent vector, which we denote as,

hτ = Fθ(wt−k:t, ct−k:t+τ , w̄t+1:t+τ−1, τ), τ = 1, ..,H,

C.2 MQF2 Conditional Sampler

We use the MQF2 architecture [7] to produce a multivariate generative forecast from the latent vector
at each horizon. The MQF2 sampler gϕ : (h, α) 7→ ŵ is common for all horizons. The MQF2
architecture consists of a partially input-convex neural network (PICNN) denoted by Φϕ(α;h) whose
gradient with respect to α is used to map the latent and uniform random vector to the forecast,

ŵt+τ = gϕ(hτ , α) := ∇αΦϕ(α;hτ ), α ∼ U([0, 1]m), (14)

where m is the dimension of the disturbance, i.e. m = 3 in this setup.

C.3 Training via Energy Score

We train end-to-end by minimizing the multivariate energy score. In particular, denote the true
disturbance sequence as w = [wt+1, ..., wt+N ] and samples of the disturbance sequence forecast
as ŵℓ = [ŵℓ

t+1, ..., ŵ
ℓ
t+N ] for sample indices ℓ ∈ [M ]. Then, a Monte-Carlo estimate of the energy

score is,

ÊS =
1

M

M∑
ℓ=1

∥∥ŵℓ −w
∥∥
2
− 1

2M(M − 1)

M∑
ℓ,ℓ′=1
ℓ̸=ℓ′

∥∥∥ŵℓ −wℓ′
∥∥∥
2
. (15)

During training, we keep the model from the epoch with the best validation loss.
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Figure 3: Comparison AR-TFT-MQF2 and vanilla TFT in terms of the energy score metric (lower is
better) for seasonal test weeks.

Table 4: Hyperparameters of the vanilla TFT baseline.

Component Hyperparameter Value

Windowing Look-back length (k) 768
Forecast horizon (H) 96

TFT

Hidden size 32
LSTM layers 2
Attention heads 8
Dropout 0.2
Quantiles 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 0.95, 0.99

Training

Optimizer AdamW
Learning rate 1× 10−4

Batch size 16
Epochs 10

C.4 Empirical Comparison with vanilla TFT

In this section, we give an empirical comparison between our proposed model (AR-TFT-MQF2)
and the vanilla TFT model [10]. The hyperparameters for the vanilla TFT are given in Table 4.
Note that the size of the output of the vanilla TFT (i.e. number of quantiles) is the same as the
size of the output of the TFT module in our proposed model (13 per horizon and disturbance
variable). In order to compare the two models at generative multi-variate forecasting, samples are
generated from the univariate quantiles of the vanilla TFT model using quantile function sampling
(see QuantileRegression.sample() in the darts documentation for details).
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We compare the models in terms of the energy score metric (15) for four seasonal test weeks in 2023:
Jan 23-Jan 30 (Winter), April 24-April 30 (Spring), Jul 17-Jul 23 (Summer), Oct 23-Oct 30 (Fall). The
results are shown in Figure 3. Figure 3 shows seasonal violin plots of energy scores for the baseline
TFT and the proposed AR-TFT-MQF2 model. In all seasons, AR-TFT-MQF2 attains lower medians,
indicating sharper and better-calibrated forecasts. The performance gap is most pronounced in spring
and summer, when disturbances such as solar irradiance, cooling demand, and occupancy schedules
exhibit stronger diurnal and weekly variability as well as higher cross-variable correlations. While
AR-TFT-MQF2 produces a wider spread of scores, the central tendency consistently outperforms TFT
whose forecasts are narrower but biased due to its inability to capture inter-variable dependencies.
These results confirm that auto-regressive MQF2 decoding enables TFT to learn both temporal and
cross-variable correlations, yielding more faithful disturbance trajectories for downstream stochastic
control.
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D More Details on SMPC with Quantile Estimation

In this appendix, we provide additional details on the SMPC with conservative quantile estimation
beyond what was provided in Section 2. In particular, Appendix D.1 describes in detail how the
chance-constraints can be formulated with the empirical quantile function, and Appendix D.1 gives
pseudocode for the proposed SMPC algorithm.

D.1 Quantile Formulation of Chance Constraint

In this section, we give details on how the SMPC chance constraints can be rewritten in terms of the
quantile function. The original SMPC chance constraints are,

P(Cx̂τ ≤ Tmax
in ) ≥ p ∀τ ∈ [t, t+N ]

P(Cx̂τ ≥ Tmin
in ) ≥ p ∀τ ∈ [t, t+N ]

x̂τ+1 = Ax̂τ +Buτ +Gŵτ ∀τ ∈ [t, t+N − 1]

(ŵt, ..., ŵt+N−1) ∼ f, x̂τ = xt.

(16)

Then, note that the predicted state at each time step can be written as,

x̂τ = Aτ−txt +

τ∑
s=t

Aτ−sBus ++

τ∑
s=t

Aτ−sGŵs

= Aτ−txt + [Aτ−t · · · A I 0 · · ·0]Bu+ [Aτ−t · · · A I 0 · · ·0]Gŵ,

where u = [u⊤
t u⊤

t+1 · · ·u⊤
τ ]

⊤ and ŵ = [ŵ⊤
t ŵ⊤

t+1 · · · ŵ⊤
τ ]

⊤. And therefore, Cx̂τ can be written as,

Cx̂τ = CAτ−t︸ ︷︷ ︸
Sx
τ

xt + C[Aτ−t · · · A I 0 · · ·0]B︸ ︷︷ ︸
Su
τ

u+ C[Aτ−t · · · A I 0 · · ·0]G︸ ︷︷ ︸
Sw
τ

ŵ

= Sx
τ xt + Su

τ u+ Sw
τ ŵ

It follows that that the chance-constraints in (16) can be written as,

Pŵ∼f (S
x
τ xt + Su

τ u+ Sw
τ ŵ ≤ Tmax

in ) ≥ p ∀τ ∈ [t, t+N ],

Pŵ∼f (S
x
τ xt + Su

τ u+ Sw
τ ŵ ≥ Tmin

in ) ≥ p ∀τ ∈ [t, t+N ].

Since the chance-constraint is separable with respect to the decision variable u and the randomness ŵ,
this can then be equivalently defined in terms of the quantile function of Sw

τ ŵ (denoted by QSw
τ ŵ(·)):

Sx
τ xt + Su

τ u+QSw
τ ŵ(p) ≤ Tmax

in ∀τ ∈ [t, t+N ],

Sx
τ xt + Su

τ u+QSw
τ ŵ(1− p) ≥ Tmin

in ∀τ ∈ [t, t+N ].

This can be approximated using the empirical quantile function Q̂Sw
τ ŵ for an appropriately chosen

probability threshold ∆:

Sx
τ xt + Su

τ u+ Q̂Sw
τ ŵ(∆) ≤ Tmax

in ∀τ ∈ [t, t+N ],

Sx
τ xt + Su

τ u+ Q̂Sw
τ ŵ(1−∆) ≥ Tmin

in ∀τ ∈ [t, t+N ].
(17)

We take ∆ = p+
√

ln(1/β)
2M for M samples, which [27] showed ensures that the constraints on u in

(17) are a sufficient condition for the original chance-constraints (16) with probability at least 1− β.

D.2 Complete Algorithm

The complete algorithm for our approach is shown in Algorithm 1. In addition to the aspects described
in Section 2, the algorithm also includes the following:

• The cost function in the MPC optimization problem is the mean of the costs of the predicted
trajectories for each of the forecast samples.

• The comfort constraints are relaxed with slack variables that are then penalized in the
cost function. This ensures that the optimization problem remains feasible, even when
chance-constraints cannot be satisfied.
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Algorithm 1 SMPC with Conservative Quantile Estimation
input current state xt, context ct, number of sampled scenarios M , validity threshold β, probability threshold

p, slack variable penalty λT .
1: Draw samples from TFT model with context:

ŵℓ = [ŵℓ
t+1, ..., ŵ

ℓ
t+N ]

iid∼ f(ct) ∀ℓ ∈ [M ]

2: Map samples through dynamics:

vℓτ = Sw
τ ŵℓ ∀τ ∈ [t, t+N ]

3: Compute conservative upper and lower quantiles of {vℓτ}Nℓ=1:

ϵτ = Q̂
(
∆; {vℓτ}Nℓ=1

)
, ϵτ = Q̂

(
1−∆; {vℓτ}Nℓ=1

)
, ∆ := p+

√
ln(1/β)

2M

4: Solve Quantile-SMPC optimization problem:

min
x̂,û

1

M

M∑
ℓ=1

J(x̂, û) + λT (∥s∥1 + ∥s∥1)

s.t. x̂ℓ
τ+1 = Ax̂ℓ

τ +Bûτ +Gŵℓ
τ ∀τ ∈ [t, T +N ],

Sx
τ xt + Su

τ û+ ϵτ ≤ Tmax
in + sτ ∀τ ∈ [t, T +N ],

Sx
τ xt + Su

τ û+ ϵτ ≥ Tmin
in − sτ ∀τ ∈ [t, T +N ],

ûτ ∈ U ∀τ ∈ [t, T +N ]

x̂ℓ
t = xt ∀ℓ ∈ [M ]

s, s ≥ 0,

5: Choose first control action ut = ût.

• The first control input computed by the MPC optimization problem (ut) is then applied to
the system.

• There are input constraints ûτ ∈ U in the MPC optimization problem, e.g. heat pump
capacity, battery charge/discharge limits, state-of-charge limits.
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E Baselines

All of the baselines solve the same SMPC optimization formulation to choose the next control action.
The only differences is the model for the disturbance, which we detail in each of the following
sections.

E.1 Gaussian

This algorithm computes the SMPC using an iid Gaussian model for the disturbances. The mean
and covariance of this Gaussian is taken to be the empirical mean µ̂ and empirical covariance Σ̂ of
the training dataset. Then, given this disturbance model, the chance-constraints in the SMPC (3) are
constructed exactly as,

Sx
τ xt + Su

τ u+QSw
τ ŵ(p) ≤ Tmax

in ,

Sx
τ xt + Su

τ u+QSw
τ ŵ(1− p) ≥ Tmin

in ,
(18)

where QSw
τ ŵ(·) is the quantile function, which can be computed exactly given that

Sw
τ ŵ ∼ N (Sw

τ µ̂, S
w
τ Σ̂(Sw

τ )
⊤), where µ̂ = [µ̂ ... µ̂]⊤ and Σ̂ = diag(Σ̂, ..., Σ̂).

E.2 VAR

This algorithm computes the SMPC using a vector auto-regressive (VAR) model for the disturbances.
The VAR model predicts the current disturbance as,

ŵt = M1wt−1 + ...+Mkwt−k + ϵt ϵt ∼ N (µϵ,Σϵ), (19)

where M1, ...,Mk are coefficient matrices that are fit from data and k is the look-back window.
In particular, we fit a VAR model to the training dataset using the VAR module from the package
statsmodels.2 We use same look-back window k = 768 also used by our proposed model. Under
the VAR model, the stacked forecast ŵ = [ŵ⊤

t , ..., ŵ
⊤
t+H ] is linear with respect to ϵt, ..., ϵt+H , and

therefore it is Gaussian. The means µ̂τ of the disturbance forecasts ŵτ are computed recursively as,

µ̂t = M1wt−1 + ...+Mkwt−k + µϵ,

µ̂t+1 = M1µ̂t +M2wt−1 + ...+Mkwt−k+1 + µϵ, and so on...

In order to write the covariance of the disturbance forecasts, we note that,

wτ − µ̂τ =

τ−t−1∑
i=0

Ψiϵτ−i,

where Ψi are the MA coefficients of the model, see e.g. [11] Section 2.2. Therefore, the covariance
Σ̂ of the stacked forecast ŵ can be written as,

Σ̂ = LΣϵL
⊤,

where L is the lower block-Toeplitz matrix with Lj,i = Ψj−i for all j ≥ i and 0 otherwise, and
Σϵ = diag(Σϵ, ...,Σϵ). Then the chance-constraints are computed as in (18) using the specified
mean and covariance of the stacked disturbance forecast.

E.3 Cantelli

This algorithm computes a conservative version of the exact SMPC using the Cantelli inequality
as is often done in the SMPC literature, e.g. [5, 16]. In particular, it computes the samples vℓτ =
Sw
τ ŵ

ℓ,∀τ ∈ [t, t + N ],∀ℓ ∈ [M ] using the forecast samples ŵℓ same as in Algorithm 1. The
empirical mean µ̂τ and empirical variance σ̂τ of these samples is then computed for each τ . The
Cantelli inequality says that,

P(Sw
τ w ≥ µ̂τ + a) ≤ σ̂τ

σ̂τ + a2
∀a ≥ 0 ⇐⇒ P

(
Sw
τ w ≥ µ̂τ + σ̂τ

√
1− δ

δ

)
≤ δ ∀δ > 0.

2https://www.statsmodels.org/dev/generated/statsmodels.tsa.vector_ar.var_model.
VAR.html
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This inequality is used to specify the SMPC constraints, i.e.,

Sx
τ xt + Su

τ u+ µ̂τ + σ̂τ

√
1− δ

δ
≤ Tmax

in ,

Sx
τ xt + Su

τ u+ µ̂τ − σ̂τ

√
1− δ

δ
≥ Tmin

in .

(20)
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F Experimental Setup

F.1 Disturbance Data

Table 5: Summary statistics for disturbance dataset.

Ambient Temperature Solar Irradiance Occupancy
mean 17.6182 167.8220 2.4353
std 8.1052 260.3170 3.8565
min -3.3000 0.0000 0.0000
25% 11.2533 0.0000 0.0000
50% 17.9133 1.4000 0.0000
75% 24.3800 262.8000 4.4667
max 36.5800 1218.8667 21.8000

The disturbance data was collected from the Mitsubishi Electric SUSTIE [1] building during 2021-
2024. This dataset includes ambient temperature, solar irradiance, and occupancy, with a 15 minute
sampling period from Jan 9 2021 through Dec 31 2024. The summary statistics for this dataset is
shown in Table 5. The first year of this dataset is used for training and the second year for validation
as detailed in Table 6.

F.2 MPC Cost and Input Constraints

In the simulations, we use the MPC cost and input constraints from [26] for both the proposed method
and baselines, which is described as follows.

Cost Function The cost function is as follows for a horizon of length N :

J(ū, w̄) =

N∑
t=1

max
(
(Pbuy)t, 0

)
+ λhp∥(Php)1:N∥

1
, (21)

with user-chosen weights λhp > 0. The term max
(
(Pbuy)t, 0

)
charges only for net purchases (since

Pbuy < 0 when selling back to the grid), while (Php)1:N denotes the control sequence over the
horizon. An ℓ1 penalty on Php encourages sparse (i.e., temporally concentrated) actuation.

Input Constraints There are hard bounds on the battery state by constraining the battery SOC
Qbat within prescribed limits:

Qmin
bat ≤ Qbat ≤ Qmax

bat . (22)
Control inputs are restricted as follows:

Pmin
hp ≤ Php ≤ Pmax

hp , (23a)

0 ≤ Pbatchg ≤ Pmax
batchg(1− sPbatchg

), (23b)

0 ≤ Pbatdis ≤ Pmax
batdissPbatchg

, (23c)

0 ≤ sPbatchg
≤ 1. (23d)

When sPbatchg
∈ {0, 1}, the pair of bounds (23b)–(23c) enforces the disjunctive condition (10) (pure

charge at sPbatchg
= 0 or pure discharge at sPbatchg

= 1). For a convex formulation, binary requirement
the binary requirement is relaxed to the continuous interval constraint (23d).

F.3 Simulation Setup

The simulations use the building model described in Appendix B. The building dataset provides the
occupancy, but not the internal heat loads, which are required for the building model. Therefore, for
the simulations, we convert the occupancy data to heat loads using the following approximation,

Pint =

Nocc∑
i=1

max(qi, 0), qi ∼ N (µq, σq), (24)
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Table 6: Training and validation ranges with counts.

Split Start date End date Number of data points
Training 2021-01-09 2022-01-08 35040
Validation 2022-01-09 2023-01-08 35040

Table 7: Simulation parameters.

Parameter Symbol Value

Environment

Initial state x0 [23 23 23 23 0.5]
Mean heat load per person (BTU/h) µq 450
Std heat load per person (BTU/h) σq 67.5

Max heat pump (kW) Pmax
hp 4.2

Min heat pump (kW) Pmin
hp -4.2

Max state-of-charge Qmax
bat 0.95

Min state-of-charge Qmin
bat 0.1

Max internal temperature (deg-C) Tmax
in 24 from 08:00 to 18:00, else 28

Min internal temperature (deg-C) Tmin
in 22

MPC
Constraint penalty weight λT 1e4
Heat pump penalty weight λhp 0.5

Probability threshold p 0.9

Quantile Number of forecast samples M 500
Validity threshold β 0.1

Cantelli Number of forecast samples M 500

VAR Look-back window k 768

where Nocc is the occupancy, µq, σq represents the mean and standard deviation of the heat load per
a person, which we choose according to ASHRAE typical values for office work [2].

The formula (24) is also used to convert the training dataset to be in terms of heat load Pint, which
is then used for fitting of the Gaussian and VAR baselines. The proposed forecasting model is
trained directly with the occupancy data, so (24) is also used for converting the samples from the
forecasting model to heat load forecasts. The reason that we fit the Gaussian and VAR baselines to
the approximate heat load data (and not the occupancy data) is because the SMPC with Gaussian
and VAR disturbance models is only tractable if they predict in the space of the disturbance wt; see
Appendix E.1 and Appendix E.2.

The parameters used for the simulations are shown in Table 7.

20



G Additional Plots

The full trajectories for each of the test weeks are given in Figure 4 (winter), Figure 5 (spring), Figure
6 (summer), Figure 7 (fall).

Figure 4: Trajectories of proposed and baselines SMPC algorithms during winter test week (January
23, 2023).

21



Figure 5: Trajectories of proposed and baselines SMPC algorithms during spring test week (April 24,
2023).
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Figure 6: Trajectories of proposed and baselines SMPC algorithms during summer test week (July
17, 2023).
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Figure 7: Trajectories of proposed and baselines SMPC algorithms during fall test week (October 23,
2023).
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