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Revolution-Spaced Output-Feedback Model Predictive Control for
Station Keeping on Near-Rectilinear Halo Orbits

Yuri Shimane!, Stefano Di Cairano?, Koki Ho?, and Avishai Weiss*

Abstract— We develop a model predictive control (MPC)
policy for station keeping on a Near-Rectilinear Halo Orbit
(NRHO). The proposed policy achieves full-state tracking of
a reference NRHO via a multiple-maneuver control horizon,
each spaced one revolution apart to abide by typical mission
operation requirements. We prove that the proposed policy is
recursively feasible, and perform numerical evaluation in an
output-feedback setting by incorporating a navigation filter and
realistic operational uncertainties, where the proposed MPC is
compared against the state-of-the-art station-keeping algorithm
adopted for the Gateway. Our approach successfully maintains
the spacecraft in the vicinity of the reference NRHO at a similar
cumulative cost as existing station keeping methods without
encountering phase deviation issues, a common drawback of
existing methods with one maneuver per revolution.

I. INTRODUCTION

With growing interest in lunar exploration, libration point
orbits (LPOs), quasi-periodic orbits about the equilibrium
points of the Earth-Moon-spacecraft three-body system, offer
unique locations to place both robotic and crewed spacecraft.
For example, the lunar Gateway is planned in the 9:2 reso-
nant southern Near-Rectilinear Halo Orbit (NRHO) about the
Earth-Moon L2 point [1], [2], shown for one revolution in
Figure 1. The instability of LPOs requires that the spacecraft
conduct station-keeping (SK) maneuvers. The purpose of SK
is to maintain the spacecraft near a pre-computed reference
LPO, or baseline, in the presence of uncertainties such as
state estimation error, modeling error, and control execution
error. Due to the stringent propellant budget, typically higher
instability of LPOs compared to traditional orbits around
planets and moons, and the low number of heritage missions
flying on LPOs, SK techniques on LPOs are an active area
of research.

To accommodate mission operations, SK maneuvers are
typically required to be as infrequent as possible [3]. On the
NRHO with an orbital period of about 6.55 days, a typical
requirement is for SK maneuvers to be conducted at most
once every revolution about the Moon. To adhere to this
requirement, a commonly adopted approach is known as z-
axis crossing control (XAC) [3], a shooting-based method
for designing SK maneuvers. Recently, the CAPSTONE
mission [4] adopted XAC, and variants of XAC are currently
being studied for the upcoming Gateway mission [3].
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Fig. 1: NRHO in Earth-Moon rotating frame

One drawback of XAC stems from the fact that at most
three out of the six translational state components can be
assigned. To overcome this deficiency, XAC leverages the
LPO’s symmetry about the xz-plane in the Earth-Moon
rotating frame [5], see Figure 1. A subset of the predicted
spacecraft state at the intersection with the zz-plane is
matched with the corresponding state components along the
baseline when it intersects the same plane. Targeting based
on xz-plane intersections results in a discrepancy between
the epoch when the spacecraft crosses the plane and when
the baseline crosses the plane. As a consequence, the steered
path may experience a phase angle deviation: the spacecraft’s
location along the orbit may drift ahead or behind the
baseline along the same orbit. To date, the phase deviation
has been treated by ad-hoc heuristics, e.g., augmenting the
targeting scheme with the epoch at which the symmetry event
occurs [3], [6], or encapsulating the targeting scheme within
a constrained optimization problem [7].

Beyond XAC, a number of model predictive control
(MPC) policies have been proposed for SK [8], [9], [10],
[11]. These policies do not suffer from phase angle deviation
issues as they provide full-state tracking by considering
either multiple maneuvers per revolution [9], [11] or a
continuously controllable spacecraft [8], [10]. Moreover,
the frequent control actions render these policies unfit for
implementation in an actual mission. Some MPC approaches
adopt quadratic cost functions [8], [11] that do not optimize
the actual fuel, which is a scarce resource for a spacecraft.
For further details, see [12] and references therein.

In this work, we propose an operationally compliant
MPC policy that overcomes the phase disparity via full-state
targeting. The proposed MPC uses a control horizon with
at least two maneuvers spaced one revolution apart, which



provides sufficient controllability to track all six state com-
ponents. Simultaneously, the one-revolution control cadence
ensures that our approach is consistent with the operational
requirement of conducting, at worst, a single SK maneuver
per revolution. To explicitly minimize the propellant con-
sumption, we employ an economic objective [13], [14] based
solely on the control cost, resulting in similar SK cost to
XAC over extended durations. The proposed MPC, hereafter
denoted as SKMPC, sequentially solves a second-order cone
program (SOCP) that steers the state of the spacecraft to the
vicinity of the baseline at the end of its targeting horizon. At
each iteration, the SOCP is re-instantiated by linearizing the
dynamics about the steered state from the previous iteration;
the SKMPC is terminated when the steered state propagated
with the nonlinear dynamics lies sufficiently close to the
baseline. We provide a brief discussion on the recursive
feasibility of the SKMPC and numerically demonstrate its
performance, with comparison to XAC.

This work extends [15] by incorporating a navigation filter
to estimate the full state of the spacecraft, validating the
proposed approach in a realistic output-feedback scenario.
Our simulation incorporates disturbances due to navigational
uncertainty, dynamics modeling errors, control actuation er-
rors, and random impulses imparted at scheduled times along
the NRHO due to momentum wheel desaturation maneuvers.
We also implement XAC and compare its performance
against the SKMPC. We provide comprehensive Monte Carlo
results with varying disturbance levels, thereby quantifying
the coupled performance of the filter and the controller.

II. BACKGROUND
A. Spacecraft Dynamics Model

We consider the spacecraft’s motion in the J2000 inertial
frame i, [16], centered at the Moon. The state of the
spacecraft & € RS consists of the Cartesian position r € R3
with respect to the Moon and the rate of change of r in iy,
denoted by v € R3. The equations of motion are [17]
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where r = ||r||2, and p is the gravitational parameter of the
Moon. The derivative of v consists, in order, of the Keplerian
acceleration due to the Moon, J2 perturbation of the Moon
a2, gravitational perturbations by other celestial bodies ay,,
and the solar radiation pressure (SRP) aggrp, all in Fr,,. We
include third-body perturbations due to the Earth and the
Sun. For expressions of aj2, ay,, and asrp, see [17]. Note
that aj2, an, and agrp in equation (1) are time-dependent,
making f non-autonomous. Constants in the equations of
motion and ephemerides of celestial bodies are obtained from
the SPICE toolkit [16].

An initial perturbation dxj at time ¢; can be linearly
propagated to time %41, denoted by dxy1, via the linear
state-transition matrix (STM) ®(¢j41,tx) € RS,

01 = Ptig1, tr)0xy. 2

The Jacobian of the dynamics may be used to construct the
STM by solving the matrix initial value problem (IVP)
P(t,ty) = —F—D(L,¢t
(ttx) 9 2t t),

We use the shorthand notations x;, = x(¢x) and D, =
®(t;,t;), and we express the block submatrices of ®;; as
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Assuming the control on the spacecraft results in an im-
pulsive change in velocity!, the state at time ¢, ; following
an impulse applied at time ¢ is given by
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where the control u, € R3 is the impulsive change in

velocity and ¢ is the Dirac delta function.

B. Earth-Moon Rotating Frame

The Earth-Moon rotating frame, JFgy, is practical for
analyzing the natural motion and devise SK controllers due
to the NRHO’s symmetry about the frame’s zz-plane, as
illustrated in Figure 1. In Fgyv, the z-axis is aligned with
the instantaneous Earth-Moon vector, the z-axis is aligned
with the co-rotating angular velocity vector of the Earth and
the Moon, and the y-axis completes the triad. The matrix

SE‘K/I € R%6 that transforms a state from Fin, to Frn 1S
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where e (), ex(t), and es(t) are the basis vectors of Fry
realized in Fi,,
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and es(t) = e3(t) x e1(t), Vgartn(t) is the Earth’s velocity

. -1 . . .
with respect to the Moon, and Ty (t) is the time-derivative
of TEY (1) in Fryy.

C. Stability on Near Rectilinear Halo Orbit

The NRHO’s unstable subspace [2] necessitates SK ac-
tions to prevent the spacecraft from diverging from the
baseline in the presence of uncertainties. Let 6 denote the
osculating true anomaly with respect to the Moon [17],

0 = atan2 (hv,,h*/r — p) , h = ||r x vz, v, = %
As noted in the literature on NRHO [2], the dynamics
are most sensitive around perilune where § = 0° and the
spacecraft is closest to the Moon, and least sensitive around
apolune where § = 180° and the spacecraft is farthest
from the Moon. To make the SK activity as robust as
possible against navigation and control actuation errors, SK

'Due to control executions lasting on the order of seconds to minutes
along an orbit with a period on the order of days, all conventional thrusters
are effectively impulsive in this application [17].



maneuvers typically execute near apolune. Let the maneuver
true anomaly 6., denote the true anomaly at which the
SK maneuver is scheduled to occur. In accordance with
operational plans for the Gateway [3], we use Oy, = 200°.

D. Navigation Filter

We consider an extended Kalman filter (EKF) to estimate
the spacecraft state. Let & € RS and P € R%%% denote the
estimate of the state  and the state covariance, respectively.
We briefly present the prediction and update steps of the
EKF, along with the measurement model and the impulse
events, where predicted quantities at ¢; based on tj_1
are denoted by ()., and updated quantities following a
measurement or a maneuver at t; are denoted by ()ﬁ

1) Prediction: The prediction step from ¢;_1 to t; is [18]
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where @ 1 is the STM evaluated along 2, and Q, _;
is the process noise accounting for unmodelled disturbances.
We adopt the unbiased random process noise model [19]

_ S [(AB/3)I5 (At?/2)Is
Qui-1 =% A2/,  Atl,

where 0, is a tuning parameter.

2) Update: At time ti, a measurement is provided to
the filter. The noisy measurement y, € R™ is assumed to
follow a multivariate normal distribution with zero mean and
covariance Ry, [18] such that y,, = h (& ) +N (0,1, Ry).
Let Hy, = H(xy) = 0h (i;) /Ox; the update step is [18]

}» At =t —t1
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@ =& + Ly, (y), — b (2)),
Pl = (Is — LyHy)P;, (I — LyHy)" + Ly R, L} .

The Joseph form of the covariance update has been adopted
for superior numerical stability [19].

3) Measurements: We consider measurements based on
range and range-rate, with h and H given by
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where 7, v, and the state components [z,y, 2, Vg, Uy, Us]
are in Jp,,. We assume a constant measurement covariance
R, = R = diag(c?,02) where o, and o; are the standard
deviations of the range and range-rate measurements.

4) Impulse Events: We model SK maneuvers as a velocity
impulse on the spacecraft uy = @y + N (03x1, V), where
u is the expected impulse, and Vi is the corresponding
covariance. The maneuver estimate @ is computed by the
SK controller and Vi, = (04 abs + O rel||@|]2)* I3, where

Ou,abs and o4 el are the absolute and relative standard
deviation of the thruster. Then, the state is updated via

& =@, + (01, ,,a"]", and the covariance is updated via

+ e 03x3 O3x3
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Such an update following an uncertain maneuver effectively
works as a partial reset to the EKF. Had we not assumed
an impulsive control model, we would need to consider a
compensation model with intensities scaled according to the
maneuver magnitude [19].

E. x-Axis Crossing Control

We now provide a brief review of XAC. XAC attempts to
maintain the symmetry of the controlled trajectory about the
xz-plane in Fgry [3]. At a given control time ¢y, let ¢, and
tNp,ref denote the NI times the predicted trajectory and
the baseline cross the xz-plane near perilune, respectively,
and xnp rof denote the baseline state at typ rer. XAC is a
single shooting problem to obtain a control uy that results
in residual F' defined as the difference between the actual
and the baseline z-axis component of the velocity in Fgyv

when crossing the zz-plane,

F=A (Sg’fa(tzvp)ﬂﬂzvp - S%&(th,ref)ﬁﬂNp,ref) ;

A= 0 0 1 0 0],

~— , |0sx1 tne
TNp =T, + [ } + Flx(t),t]dt,
U th
being below a user-defined threshold er. Note that ¢y, #+
tNpref since these are the times at the xz-plane crossing
along two different trajectories. The maneuver wu(ty) is
obtained by Newton-Raphson iterations,

uy, « u, — DFT (DFDFT) ™" F (u;), DF = aa—F,

* (0)
until |F'| < ¢,,. Since XAC suffers from phase dispersion,
Davis et al. [3] propose augmenting F' with the difference
between ty, and tnp rer; however, this approach requires
balancing physically different quantities of F' during the
Newton-update, making it sensitive to hyperparameters and
non-intuitive to tune [7].

III. FULL-STATE TARGETING EcONOMIC MPC FOR
STATION-KEEPING ON NRHO

SKMPC computes a sequence of maneuvers based on
the state estimate &, at the current time ¢; to ensure the
predicted state at some future time ¢y > ¢, lies in the vicinity
of the baseline. To reduce the sensitivity of the errors on
the targeted state, we select ¢ to correspond to the apolune
along the baseline approximately N.., revolutions in the
future. This proposed method computes an SK maneuver at
the prescribed 6y,,, such that the steered state lies in the

vicinity of the baseline at the NI apolune into the future.
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Fig. 2: Control horizon with N =9 and 60,,,,, = 200°

A. Problem Formulation

Let (-),| denote a quantity predicted at j time increments
ahead of the EKF’s estimate &, at t;. Let N = Ny, +
1 denote the number of impulse maneuvers in the control
horizon, with controls denoted by w;;, € R, j =0,...,N—
1, occurring at times

b = ) HOman, )
I (1800, )

where ¢(a, b) denote the earliest time ¢ > ¢, such that §(t) =
a after completing b revolutions. Figure 2 illustrates the
control horizon defined by (11) for N = 9 and 6,,,,,, = 200°,
corresponding to about 50 days.

We formulate a minimization problem with an economic
sum-of-2-norm objective of N maneuvers, which corre-
sponds directly to the propellant mass consumed via Tsi-
olkovsky’s rocket equation [17]. Let X € RS*N and U €
R3*N denote the concatenated states and controls

X = [330|k

j=N-1 (an

zn_1k)» U= [ugp UN 1] -

Let &3, denote the predicted trajectory prior to computing
the SK maneuvers, and u);; denote pre-planned maneuvers,
initialized to O3z 1. We define X and U as

X = [Zopx

Zy 1), U= [t UN_1k] -

We begin by defining the discrete-time optimal control
problem (OCP) assuming linearized dynamics around &, then
will subsequently consider a sequential linearization scheme
in Section III-D, where the OCP will be solved repeatedly,
each time updating X and U. The OCP with linearized
dynamics is

N-1
I
Jj=

TV
Tji1k = Pjgr1 6Tk T [ ﬁl’jlk] Uj|k + Cjt1,jk
s.t. j+1,4lk
j=0,...,N—2
(12b)
To, = &, (12¢)
0
TN+ {u o } € Xiarg(tn-1ik) (12d)
N—1|k
z,€X, Vj=0,...,N—1 (12e)
wj €U, Vji=0,...,N—1, (12f)

where X is the admissible set for the state, I/ is the
admissible set for the control, ®;, 1 ;5 is the STM from ¢;;,

to t;41), with initial condition Z;); and impulsive control
Uj|k, and cjyq |k s given by

_ _ 0
QﬁmwmﬂwkéﬁkaWW+{Mﬂ>vﬂm

Uj|k
~ ~ tit1lk ~ 0341
$j+1,j|k:mj|k+/ f(il:,t)+5(t7tk) |:'(_1, :|dt
tilk Jlk
The linearized dynamics in (12b) implies that the control
action Uj|k shifts the state within some trust-region & € RS,

|k — T <6, j—0,...,N—1

Constraint (12¢) enforces the initial state to coincide with
the current state estimate, and constraint (12d) enforces the
final state to lie in Xarg (fn—1)). In (12f), U is defined with
a maximum executable control magnitude u,,x as

U={ueR’®: |lullz < umax ]} - (14)

B. Definition of Terminal Constraint Set

Let Xarg(tn—1)%) be a 6D ellipsoid centered at the base-
line state @ rof £ [r?ref, v?ref]T in FeM at time ty_q g,

Xtarg(thﬂk) =

(15)
{EB eR"™: ||'rl - Tf,ref”Q < €r, ||U - vf,ref”Z < Gv}a

where €, and ¢, are the magnitudes of the apses of the
ellipsoid along position and velocity components, and are
tuning parameters. The terminal constraint (12d) can be
replaced by two second-order cone (SOC) constraints,

Hr%hflﬂc — T fref ) < e, (16&)

(16b)

EM Inr
HUN—1|k + TEMUN 1]k — Vf,ref ) < €y,
EM
where TNC1|k

- Inr
Ty (EN—1k)TN=1k + Tgll\r/[(tN—Hk)vN—l\k-

Inr EM _
Tey(tv—1e)ry-1k and o0, =

C. Recursive Feasibility

Next, we briefly discuss the recursive feasibility of prob-
lem (12) with input constraint (14) and terminal set con-
straint (15). The non-autonomous dynamics (1) results in the
terminal set Xiarg(tn—_1);) to also be time-dependent, com-
plicating the application of the classical approach for proving
recursive feasibility of MPC. Computing and storing such a
time-varying set for the NRHO, which is not periodic but
only quasi-periodic, may be prohibitive in practice. However,
this specific application has some favorable conditions that
help us recover guarantees of recursive feasibility. First, for
the considered family of orbits, the STM in (12b) ensures
controllability of the linearized system around the nominal
orbit, described by f(xg,t). Second, the available thrust
upper-bounded by umax is “significantly larger” than what
is required in SK maneuvers, although the general desire is
to minimize the requested thrust.

Proposition 1: Let 2 < K < N correspond to the number
of maneuvers such that

TUv @’!"U
rank { ivv—mk} [(I)lzyv—LK—m} — 6.
N-1,0|k N-1,K—1|k




For a large enough wup,,x, if (12) is feasible at time tx_
then it is feasible at ¢;. Furthermore, the trajectory remains
bounded in a set X},,q at the apolune times ty.

Proof. Since (12) is feasible at ¢;_;, there exists
Uk (tk-1) = [Wojk—1,-- -, UK _1)k—1] Such that Ty 1,1 €
Xiarg(tN—1|k—1), Where T _1|;_1 is obtained by applying
the entire sequence Uk (t—1) via (12b) followed by open
loop evolution from tK 1k—1 tO0 tny_1jp—1- Let Tnjp_1 =
TN k-1 + j;t;j lll‘: _ f (x,t)dt. We need to prove that it
is possible to obtain a state perturbation dx_y; such that
TNp—1 T O0TN_1|k € Xrarg(EN—_1]k)-

Consider the candidate control sequence Uk (tx) =
[Wijk—1+0Ugps - -+ WK —1)k—1+OUK 2k, UK —1|x) and

5-’EN 1|k
i1 30
N 1,jlk N1 K1k
= Z [ / }5“alk+ [ ez
N1,k N-1,K—1[k
Then, Tn_1jx = Typ—1 + 0TN_1jk € Xrarg(Env_1jr)

is guaranteed by the controllability in K steps for some
AUk (tk) = [0ugjg, - - -, 0UK 2|k, Ui —1)x) Which perturbs
and extends the previous control sequence Uk (t—1). For a
large enough wpax, the sequence Uk (ty) is feasible. Due
to the finite horizon and the bounded thrust, the trajectories
remain bounded in a set X},q because the control strategy
enforces (12d), and Xyarg(ty—1)%) is bounded by (15). m
With regards to the assumptions in Proposition 1, due to
the quasi-periodic nature of the orbit, the difference between
Xiarg (tN—1jk—1) and Xarg(tny—1)%) is usually small. The ne-
cessitated correction dx is thus relatively small compared to
the control authority u,,,x. Hence, the maximum thrust of the
propulsion system will be sufficient to ensure the feasibility
of the candidate control sequence. The controllability of the
spacecraft in the NRHO orbit ensures the rank condition.
The economic structure of the SKMPC, along with its
operational setting, complicates the theoretical demonstration
of closed-loop stability. Angeli [14] demonstrates closed-
loop stability for economic MPC operating with respect
to an equilibrium point for a strictly dissipative system
by introducing a dissipation inequality. With the present
SKMPC, the control is with respect to a quasi-periodic orbit
in non-autonomous dynamics and in the presence of un-
certainties. Guaranteeing closed-loop stability would require
modifying the OCP (12), which would compromise its fuel-
optimal structure [20], and it is not clear whether stability, as
opposed to bounded deviation, is desirable in this application
due to the impact on fuel consumption. From an empirical
standpoint, the behavior of the SKMPC under uncertainty is
demonstrated through numerical simulation in Section V.

D. Sequential Linearization Scheme

To reduce the prediction error introduced by the lin-
earization in (12d), we employ a sequential linearization
scheme [7], [21], where problem (12) is solved sequentially,
each time re-linearizing the dynamics.

At each iteration of the sequential linearization, we up-

date X and U with the optimal solution X* and U™ to

problem (12) and recompute ®;; ;; and c;iq jj, using
equations (3) and (13) along the updated the predicted states
Z |1, and pre-planned maneuvers u, for j =0,..., N — 1.

Algorithm 1 summarizes the SKMPC with the sequen-
tial linearization scheme. At tj, the algorithm requires as
input the control horizon fgy, . ..,tn_1 %, the current state
estimate &, , the baseline state history @yc(t), terminal
constraint set Xiarg(fn_1), admissible control set ¢, and
the maximum number of iterations for linearization M. In
line 1, X is initialized using the current state estimate &,
and the baseline state at ¢, for j = 1,..., N—1, denoted by
Zref (1) Note that solving (12) does not require a dynam-
ically feasible initial sequence Z;. In line 4, 1inearize
constructs the linearized expressions ®;, 1 ;i and ¢;ji1 jx
around the a priori solution &3, and @, for j =0,..., N—
1. In line 5, SOCP solves (12) with a convex solver, e.g.,
here we use the interior point solver Clarabel [22]. The
algorithm terminates once the solution X* and U™ to (12)
satisfies the nonlinear dynamics (4) for j = 0,...,N — 2,
and returns the earliest control wug;, for execution. Then,
the spacecraft remains in the corrected orbit until the next
maneuver instance tj41, at which time Algorithm 1 is called

again to compute UQ|k+1y -y WUN—1|k+1-

Algorithm 1 SKMPC with Sequential Linearization
7tN—1\kv :i];’ mref(t) Xtarg(tN—l\k)s Z/l’ M
Tref (t1|k) Lot (En_1)k)]

Inputs: 7g, - -
X (&)
2: U <+ O3«n
3: while true do

4: ®,c+linearize(X,U)

5: X*,U" +=s0CP(z;,, ®, ¢, Xarg (tn—1k), U)
6: if (4) is satisfied for j =0,..., N — 2 then
7: break

8: end if

9: X, U « X*, U
10: end while

> Update for next iteration

Outputs: ugl &

IV. SIMULATION SETUP

The SKMPC is tested on a realistic SK scenario for a
spacecraft flying on the NRHO. The simulation consists of
recursively applying Algorithm 1 for an extended number
of revolutions spanning multiple years, subject to navigation
errors from the EKF, as well as modeling errors, control
execution errors, and impulses due to momentum wheel
desaturation.

A. Error Models

The ﬁlter is initialized with initial covariance Pgjg =

diag([o? , 02,02 ,00,,05,,02,]) and initial state estimate

.’f}o = :I}(to) +N(06><1, P0|O)
(to) = Tret(to) + N (OGXl,block dlag(a I3, 02 I3))

where x(t) is the true state at the initial epoch g, @yef(to)
is the baseline state at ¢y, oy, is the initial position standard



deviation, and o, is the initial velocity standard devia-
tion. At each revolution, when the spacecraft arrives at
0(t) = Oman = 200°, a maneuver is computed using
the predicted state of the filter, &, and a control horizon
defined by (11). The true state of the spacecraft is imparted
with a corrupted maneuver using the Gates model [23]. We
incorporate dynamics errors, which consist of variation in
SRP magnitude and random impulses due to momentum
wheel desaturation [3]. The former is modeled by relative
perturbations §(A/m) and §C,. on A/m and C, in the aggp
term of (1), and the latter is modeled by an additive velocity
perturbation Av with random direction and magnitude when
the spacecraft arrives at 0(t) = Oqesat, Where Ogesat are desat-
uration true anomalies dictated by mission requirements [3].

Table I summarizes the error parameters, corresponding
to the assumed levels of uncertainties for the Gateway [3],
along with the selected process noise parameter o,. Note
that the choice of o, is dependent on the canonical scales in
which the dynamics are expressed.

TABLE I: Simulation parameters

Simulation parameter Value
Average SRP A/m, m? /kg 315/17900
Average SRP C, 2
SRP rel. 6(A/m) 3-04/m> % 30
SRP rel. 6Cr 3-0¢,., % 15
Desaturation velocity magnitude 3-0gesat, cm/s 1.0
0° or
Desaturation true anomaly 64egat, deg 330°,0° or
330°,0°, 30°
Maneuver rel. magnitude error 3-04, rel, % 1.5
Maneuver abs. magnitude error 3-04, abs, mm/s 1.42

Maneuver execution direction error 3-0 a4 dir, deg  1°

Initial position standard deviation 3-0,, km 10

Initial velocity standard deviation 3-0,, mm/s 10

Range measurement 3-0,-, m 1
Range-rate measurement 3-o, mrn/ S 0.1
Process noise parameter oy, 5x 1075

B. Navigation Update Model

In accordance with the typical operation of ground-based
tracking, we assume measurements are provided during
tracking windows, each lasting Aty.,c = 1 hour. Let ¢, and
tk+1 = tx + T, where T =~ 6.55 days is the approximate
orbital period of the NRHO, denote two consecutive control
epochs, such that 6(t;) = 6O(tk+1) = Oman. In each
revolution, we consider one post-maneuver tracking window
starting 12 hours after ¢, and three pre-maneuver tracking
windows, starting 72, 48, and 7 hours before tj ;. During
each tracking window, we provide Npeas = 10 equally
spaced measurements. At 41, Algorithm 1 uses the EKF’s
predicted state estimate following the latest measurement
update provided ty+1 — 7 + Atirack = 6 hours earlier.

C. Control Trigger Condition

To improve the delta-V performance of the SKMPC un-
der navigation and execution errors, we consider a trigger
condition to determine whether a maneuver is required. This

condition checks if the state propagated forward without con-
trol until ¢ lies within an ellipsoid about the baseline with
radii €, ¢rjg in position and €, i in velocity components,

||77‘N—1\k' - rf.,ref”Z S €r trig, ||{}N—1|k - 'Uf,refH2 S €, trig,

where Z(ty_1x) = [i’%_llk,f;%_llk]T. Tolerances €, trig
and €, trig do not need to be the same as €, and €, in (16).
Choosing €/, < €/y trig Makes the closed loop more robust
against uncertainties; recursive feasibility is recovered by
modifying the proof that is based on €, irig and €, (g instead
of €, and ¢, still assuming a sufficiently large uyax.

V. NUMERICAL RESULTS

We conduct a Monte-Carlo simulation, where each sample
consists of navigating and performing SK over 300 revolu-
tions along the baseline NRHO of the Gateway generated by
NASA [1], corresponding to over 5.3 years. We compare the
performance of SKMPC against XAC. With the SKMPC, we
use Nyey = 8 and umax = 1 m/s, with triggering thresholds
€rtrig = 100km and €, 44 = 20m/s, and terminal con-
straint radii €, = 25km and €, = 5m/s. With XAC, we
use Nyey = 7, i.e., targeting the 7th perilune downstream,
with €,, = 1m/s. From preliminary experiments, we note
that we are able to use a larger N,., with the SKMPC
due to (1) the multiple-shooting formulation and (2) reduced
sensitivity targeting conditions around apolune, compared to
XAC, which is a single-shooting formulation that targets
conditions around perilune. All thresholds are defined in
Fem. We conduct three cases using 1, 2, and 3 desaturation
events per revolution, at fgesat provided in Table I.

The dynamics is integrated using the explicit Runge-
Kutta Prince-Dormand (8,9) method from the GNU Scientific
Library [24], rescaling (1) with canonical distance unit DU =
10° km and velocity unit VU £ /u/DU to improve
numerical conditioning, with relative and absolute tolerances
set to 1074, The SKMPC takes an average of 2.57 sec to
solve on a single Intel i7-12700 CPU; the majority of the
computational effort comes from propagating the STMs.

A. Navigation Performance

We first look at the navigation estimates provided to the
controller. Figure 3 shows the estimation error of the EKF
for the case involving 3 desaturation events and controlled
by SKMPC; only the first 60 days are shown for the sake
of clarity, as the filter performance is qualitatively similar
across the remaining 240 days. The filter performance for 1
and 2 desaturation events, controlled by either the SKMPC or
XAC, is qualitatively similar. For assessing SK activities, we
focus on navigation performance at the maneuver time. Ta-
ble II shows the numerical 3-0 pre-maneuver state estimation
error with 1, 2, and 3 desaturation events using the SKMPC;
errors using XAC are at similar orders of magnitude. As
the number of desaturation events increases, the navigation
error at the control epoch gets worse. The spikes in velocity
estimate errors and corresponding covariance correspond to
perilune passes, where the spacecraft undergoes a rapid
change in direction of motion as it flies by the Moon.
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Fig. 3: Estimation error in Fy,,, with 3 desaturation events

B. Cost Performance

Tables III and IV provide cost statistics using the SKMPC
and XAC. With both controllers, the SK cost increases as the
navigation performance worsens; across varying numbers of
desaturation events, the SKMPC provides both a lower yearly
cost mean and standard deviation compared to XAC. The
cumulative cost histories with 3 desaturation events per rev-
olution are shown in Figures 4(a) and 4(b). With the SKMPC,
the cumulative cost history follows a predominantly linear
trend, indicating the controller is applying the appropriate
level of control effort to keep the spacecraft motion near the
baseline despite the uncertainties. In contrast, with XAC, the
growth of the cumulative cost varies significantly based on
the Monte-Carlo sample, which is a sign of the controller’s
susceptibility to uncertainties that lead to phase deviation.

TABLE II: Pre-maneuver state estimation error in Jgy

Number of desaturation events 1 2 3
(& — x) 3-0, km 0.924 1.041 1.128
(9 —y) 3-0, km 1.068  1.311 1.492
(2= 2) 3-0, km 0.635 0.677 0.711
(B¢ — vg) 3-0, cm/s 0.213 0.222 0.228
(ty — vy) 3-0, cm/s 0.700  0.927 1.086
(02 — vz) 3-0, cm/s 0.101 0.119 0.133

TABLE III: Cost statistics using SKMPC

Number of desaturation events 1 2 3
Yearly mean, cm/s 109.96 153.48 186.83
Yearly standard deviation, cm/s 8.24 9.99 12.35
Yearly 95 percentile, cm/s 12321 16934  208.63

TABLE IV: Cost statistics using z-axis crossing control

Number of desaturation events 1 2 3
Yearly mean, cm/s 111.94 135.76 155.29
Yearly standard deviation, cm/s 33.26 30.77 26.94
Yearly 95 percentile, cm/s 178.78 19255 198.66
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Fig. 4: Cumulative cost history with 3 desaturation events

C. Tracking Performance

We now analyze the tracking capability of the SKMPC
and XAC. To isolate the effect of phase deviation, we
compare the epochs and states at perilune passes of the
controlled trajectory to the corresponding perilune passes
of the baseline. Figures 5 and 6 show the deviation of the
epoch and state in Fg at each perilune passage. Note that
in FgnM, perilunes occur approximately along the +z axis,
with the spacecraft’s motion approximately perpendicular to
the position vector; thus, the error is expected to be larger
in z compared to x and y in position components, and v,
and v, compared to v, in velocity components.

XAC experiences secular growth in phase deviations; the
epoch deviation at perilune, while varying largely on the
Monte-Carlo realization, reaches the order of several days,
with passes deviating by up to 500km in position and
200m/s in velocity. By augmenting XAC with residual on
perilune epoch deviation, Davis et al. [3] reports deviations
of up to 80 km in position and 48 minutes in epoch.

In contrast, through its full-state tracking property, the
SKMPC keeps the perilune epoch deviation to about 30 min-
utes, with position deviations of about 50 km and velocity
deviations of about 10m/s. In general, tighter tracking of
the baseline is desirable since more stringent requirements
can be met with regard to the spacecraft design or payload
operations that require remaining closer to the intended path.
For instance, the NRHO baseline for the Gateway is designed
to be free of any Earth-shadowing eclipses [2], and tight
tracking despite the dynamical uncertainties and errors can
ensure that no such eclipse occurs during the flight.

VI. CONCLUSION

We proposed an economic MPC for the SK problem on the
NRHO. This SKMPC achieves full-state tracking by taking
into account multiple maneuvers within its control horizon.
The controls are placed one revolution apart, making our
approach operationally compliant to the single maneuver-
per-revolution requirement typical in space missions on the
NRHO. Through full-state tracking, the SKMPC overcomes
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Fig. 6: State deviation in Fg; at perilune passes

the issue of phase deviation encountered by other state-of-
the-art SK schemes with a single maneuver per revolution.
We tested the SKMPC with output-feedback using an EKF
with range and range-rate measurements, and subject to
realistic error models. Our approach achieves cumulative
maneuver costs comparable to SK approaches proposed
in the astrodynamics literature, while resulting in tighter

tracking of the baseline orbit in both space and phase without
additional ad-hoc heuristics, as required in XAC.
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