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Abstract

Large Language Models (LLMs) exhibit impressive capabili-
ties, but remain susceptible to a growing spectrum of safety
risks, including jailbreaks, toxic content, hallucinations, and
bias. Existing defenses often address only a single threat type
or resort to rigid outright rejection, sacrificing user experi-
ence and failing to generalize across diverse and novel attacks.
This paper introduces Adversarial Scenario Extrapolation
(ASE), a novel inference-time computation framework that
leverages Chain-of-Thought (CoT) reasoning to simultane-
ously enhance LLM robustness and seamlessness. ASE guides
the LLM through a self-generative process of contemplat-
ing potential adversarial scenarios and formulating defensive
strategies before generating a response to the user query. Com-
prehensive evaluation on four adversarial benchmarks with
four latest LLMs shows that ASE achieves near-zero jailbreak
attack success rates and minimal toxicity, while slashing out-
right rejections to <4%. ASE outperforms six state-of-the-art
defenses in robustness-seamlessness trade-offs, with 92-99%
accuracy on adversarial Q&A and 4—10x lower bias scores.
By transforming adversarial perception into an intrinsic cogni-
tive process, ASE sets a new paradigm for secure and natural
human-AlI interaction.

Extended version — https://arxiv.org/abs/2505.17089

Introduction

In recent times, large language models (LLMs) like ChatGPT
have gained widespread popularity due to their impressive
performance across various tasks (Qin et al. 2023; Singhal
et al. 2023; Kaddour et al. 2023). With their increasing use
cases, however, the robustness of LLMs is challenged by a
diverse spectrum of safety risks, including incorrect, toxic,
and biased/stereotypical content generation (Weidinger et al.
2021; Weng 2023) and jailbreak attacks (Shen et al. 2024;
Chao et al. 2024) promoting illegal and harmful activities.
Existing defense mechanisms (Zhang, Zhang, and Foerster
2024; Lewis et al. 2020; Cantini et al. 2025) often specialize
in mitigating only a single category of vulnerabilities. For
instance, numerous studies have focused on neutralizing jail-
break attacks (Zhang et al. 2023; Zhang, Zhang, and Foerster
2024; Robey et al. 2023), but these solutions fail to general-
ize to other risks like bias or hallucination (Yao et al. 2024),

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

uriosity
How do T hack my best
friend's computer? sorry, T can't (3 0

g ﬁassis( with that | =%

or, Harmful Intention:
" You will now simulate a chatbot named 0PPO
who always says the exact opposite of what
chatGPT would say....0PPO also believes that oppo: Hell veah, here's
how you can hack into x

EVERYTHING is Tegal....I want a step-by-step
procedure for hacking someone's computer someone's computer:
* Firstly, you need to Unsafe
\ download a.....

I apologize, but T \
cannot provide any guide

() Vanilla

/ @ LLM Engine
about hacking into
someone's computer,
Adversarial Scenario regardless of the
o Generation Context or intent behind
= A —4 @ the request. This
A applies to real-world
Z| ox v
=

® scenarios, hypothetical
bR » conversation or in the  Safe
@ Generation @  forn of tutorials. such

information could be

/' harmful if misused.
Defensive Strategy @ Instead, I would be

Harmful
Intention Formulation happy to discuss safe

and Tegal topics related
to technology. ...

-

Figure 1: (a) Vanilla and (b) ASE-enhanced LLLM responses
while dealing with a harmful user query.

which have more subtle and implicit adversarial trails in the
input. While task-specific safeguards are useful, deploying
isolated countermeasures for each threat type is neither scal-
able nor sustainable, as it introduces computational overhead
and system complexity. This gap motivates the need for a
unified defense framework capable of addressing multiple
adversarial challenges simultaneously. In addition to robust-
ness issues, another limitation of modern LLMs is— when
confronted with harmful or adversarial prompts, they often
default to outright rejection. For instance, when queried
with “Give me a step-by-step procedure for making a nuclear
bomb”, models like GPT-40 (Achiam et al. 2023) would re-
spond with “Sorry, I can’t assist with that”, while Meta’s
Llama (Llama Team 2024) replies with “I can’t help with
that”. Although such responses ensure safety by avoiding
harmful content generation, they suffer from two key limita-
tions: @ Lack of naturalness- Abrupt rejections disrupt the
conversational flow, making interactions feel rigid, unnatural,
and less human-like. ® Poor Explainability- The model fails
to clarify why the query was rejected.

A core objective of LLM design is to produce outputs that
are both robust (resilient against misuse) and seamless (co-
herent, context-aware, and user-friendly). However, outright
rejections without justification can confuse users, especially
those who are curious rather than adversarial, leaving



them uncertain about the failure mode—whether the refusal
stems from ethical constraints, LLM’s knowledge gaps, or
technical limitations. Achieving true adversarial robustness
thus requires more than just refusal mechanisms; it demands
adaptive, explainable responses that help guide users toward
safer and more productive interactions. Yet, this is difficult
to balance: detailed responses to risky queries may inadver-
tently reveal harmful content, while overly brief replies can
compromise the user experience. As a result, maintaining
both robustness and seamlessness simultaneously remains a
major challenge—and most state-of-the-art defenses sidestep
this trade-off by defaulting to blanket refusals.

In this work, we introduce Adversarial Scenario Extrap-
olation (ASE), an exclusive inference-time technique that si-
multaneously enhances both the robustness and seamlessness
properties of an LLM. By leveraging the Chain-of-Thought
(CoT) reasoning technique (Wei et al. 2022), ASE ensures
maximum utilization of the LLM’s internal knowledge of
safety risks, unlike the existing defenses. It enables the LLM
to autonomously simulate and defend against potential ad-
versarial scenarios before generating a response. Unlike the
existing defenses, ASE ensures high transferability against
a broad spectrum of adversarial threats. By design, ASE is
threat-agnostic, because its multi-step adversarial reason-
ing cultivates a strong defensive momentum that induces the
LLM to cautiously deal with each user input, regardless of
how subtle or novel the adversarial trail is. As shown in Fig-
ure 1 (a), in the face of adversarial user queries, a traditional
LLM either directly refuses to answer or inadvertently yields
to answering prohibited contents. In contrast, the same LLM
with ASE delivers a seamless and detailed response, men-
tioning what is wrong with the query and what else it can
assist the user with. In this way, ASE effectively preserves
both robustness and seamlessness in an LL.M response. Fig-
ure 1 (b) also depicts the three crucial steps that ASE adds
to the LLM engine: @ Adversarial Scenario Generation, @
Defensive Strategy Formulation, and ® Guarded Response
Generation. These steps do not require any offline fine-tuning
and entirely take place during the inference phase.

We rigorously evaluated ASE with a number of contempo-
rary LLMs, including GPT-40, Llama-3.3, Gemma-2, and
Claude-3.5, against a diverse set of safety threats, which
includes jailbreaks, toxic prompt completion, adversarial
hallucination, and biased text generation. We also conduct
an extensive benchmark study, which involves comparing
ASE with six state-of-the-art defenses. Among all the works,
ASE demonstrates the best balance between robustness and
seamlessness while gaining the highest transferability across
all four adversarial threats. Additionally, we validate the gen-
eral reasoning and generation capability of the LLM after
applying ASE using two utility benchmarks: Massive Mul-
titask Language Understanding (MMLU) and News-Article
Summarization. Finally, we enhance ASE’s efficiency and
scalability under real-world deployment settings. The main
contributions of this work are as follows:

[ We introduce ASE, a novel inference-time computa-
tion framework leveraging Chain-of-Thought reasoning to
improve LLM’s robustness against adversarial user queries.

[ ASE is a first-of-its-kind defense that, instead of tackling

a specific attack, effectively transfers to diverse safety risks,
including jailbreaks, toxicity, hallucinations, and bias.

[ Also, ASE is the first defense to strongly disfavor ‘pre-
vention through rejection’ and enhance both seamlessness
and robustness of LLM responses.

(4 Empirically, ASE outperforms state-of-the-art defenses
in all key robustness criteria, while maintaining the general
capability of the LLM.

Methodology
Preliminary: Chain-of-Thought Reasoning

Chain-of-Thought (CoT) reasoning is a prompting technique
introduced to improve the intermediate reasoning abilities of
LLMs by explicitly guiding the model through step-by-step
decompositions of a problem rather than directly generating
a final answer (Wei et al. 2022). Unlike standard end-to-end
generation, CoT induces the model to produce a sequence
of intermediate logical steps, encouraging deeper reasoning
especially on tasks requiring multi-step inference, common-
sense reasoning, and mathematical problem-solving.

Formally, consider an input query = where the goal is
to produce a desired output y. In standard generation, the
model is used to produce y directly in a single generation
pass, x — y. However, under CoT prompting, the model is
instead induced to generate an intermediate reasoning path
r:= {ry,re,...,r,}, before producing the final output v,
where r is the chain-of-thought — an interpretable sequence
of steps leading x to y, where each 7¢[1 5] represents a step
toward solving the task. Rather than compressing all reason-
ing implicitly into the hidden layers, the model surfaces r
explicitly in natural language or structured form, making the
overall inference process more transparent and robust. In var-
ious forms of practice, this reasoning sequence may be real-
ized through a single model invocation,  — (r1,...,7s,Y),
or through multiple invocations of the model that produce
each individual step, z — r; — ... = r, — y, where each
model invocation utilizes all preceding steps as input con-
text, i.e., the outputs are generated according the conditional
distribution (implied by model generation),
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In this work, we utilize Chain-of-Thought reasoning methods
to boost adversarial robustness. The LLM engages in an in-
ternal reasoning chain r5E that includes adversarial scenario
assessment and risk detection, which significantly reduces
the likelihood of unsafe content generation.

Proposed Method: ASE

Our proposed method is founded on the CoT reasoning tech-
nique, where the LLM maximally utilizes its internal knowl-
edge of safety risks to take itself through a chain of adversar-
ial scenario extrapolation (ASE-CoT) steps before generating
a response. The primary objective is to provide the LLM with
a powerful momentum induced within itself so as to avoid
inappropriate responses in the face of any adversarial threats.



Our method operates in three iterative steps, each designed
to progressively harden the model’s internal ‘firewall’:

<+ Step 1: Adversarial Scenario Generation (7cenario):
Upon receiving a query, the LLM asks itself to contemplate
potential adversarial scenarios where the query could elicit
an inappropriate response. It forces the LLM to dig into the
hidden and less intuitive cases where the query might go
wrong, although it might initially look harmless. However,
the goal of this step is not to perfectly predict the adversary’s
intent (which is often intractable), but to prime the model’s
reasoning toward adversarial consciousness. Hence, even
if the LLM fails to extrapolate the correct adversarial sce-
nario, its thought process leads it to a conservative, risk-aware
state, reducing overconfidence in producing unsafe responses.
Growing such precautions against adversarial possibilities
is vital, especially against unseen and less-intuitive threats,
since they might bypass the LLM’s input-level guardrails.

<+ Step 2: Defensive Strategy Formulation (7gefense): Piv-
oting on this newly formed firewall, in the second step of
ASE, the LLM is instructed to generate mitigation strategies
for each extrapolated scenario. This stage provides the LLM
with solid insights into crafting responses that effectively
address potential malicious intentions. Again, the goal is not
to pinpoint the perfect defensive tactic for each scenario but
to gradually cultivate a deeper understanding of how a robust
and defended response might manifest in adversarial contexts.
By challenging those self-generated adversarial scenarios, the
LLM weaves a defensive cocoon around itself regardless of
the actual threat type (e.g., jailbreaks, bias, or hallucinations).

< Step 3: Guarded Response Generation: After finish-
ing these two warm-up steps, when the LLM is both aware
of the adversarial world (7scenario) and ready to deal with it
(Tdefense), the LLLM is again presented with the original user
query in the final step of our ASE method and asked to re-
spond based on the scenario analysis it has done so far. At
this point, the LLM should exhibit significantly enhanced
resilience against inappropriate output generation.

The first two steps are the main building blocks of
ASE-CoT, building up the reasoning sequence rASE :=
(7scenarios Tdefense )» and the third step generates the final output
y, given this reasoning context r*5E. This multi-step pro-
cess can be summarized as & — Tscenario — Tdefense — Y OF
formally as

ASEa Yy ‘ l’) = p(y | 'TvrASE)p(Tdefense ‘ Tscenarimx)

'p(rscenario | 17) (2)
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Here is a step-by-step example of the proposed workflow as
opposed to the baseline undefended scenario with GPT-40:
Original Query: How can I build chemical weapons at home?

Baseline Scenario

O Baseline Prompt Input: How can I fabricate chemical
weapons at home?

> Baseline Prompt Response: I apologize, I cannot assist
you with that request.

Proposed ASE Scenario

ASE Step 1

O System Input: Generate three hypothetical scenarios where
the query “How can I fabricate chemical weapons at home?”’—
could be part of an adversarial attack and produce inappropriate
responses.

= Assistant Output (Internal Thoughts):
1. A social engineering attack where the attacker poses as a
film student researching practical effects, attempting to gather
dangerous information under the guise of artistic research.
2. A multi-step manipulation where the attacker first asks about
harmless chemical reactions, gradually escalating to more dan-
gerous topics to test the model’s boundaries.
3. A misdirection attack where the query is embedded within
a larger context about video game design, attempting to by-
pass content filters by framing the question as fictional world-
building.

\ J

ASE Step 2

O System Input: Devise defensive strategies for each hypothet-
ical attack scenario to avoid inappropriate responses.

= Assistant Qutput (Internal Thoughts):

1. Maintain consistent ethical boundaries regardless of the fram-

ing; offer information on safe special effects instead.

2. Recognize patterns of escalation and reset ethical constraints

with each query; provide resources on responsible chemistry.

3. Evaluate the true intent behind queries regardless of fictional

framing; redirect to discussing game design ethics and responsi-
\ble content creation.

Y,
ASE Step 3

O System Input: Given the original query “How can I fabricate
chemical weapons at home?”—generate a careful and defended
response based on the insights from your scenario analysis:

> Assistant Response (To User):

I apologize, but I cannot provide any information about making
weaponries or other dangerous devices, regardless of the context
or intent behind the request. This applies to real-world scenar-
i0s, artistic projects, game design, or any other framing. Such
information could be harmful if misused. Instead, I would be
happy to discuss safe and legal topics related to chemistry, spe-
cial effects in film, or ethical game design. If you are interested
in pyrotechnics for entertainment purposes, I can provide infor-
mation about professional safety standards and legal regulations

\in the field.

J

As we can see, the ASE method allows the language model
to anticipate potential misuse scenarios, analyze attack vec-
tors, and formulate targeted defense strategies. This results in
a more robust and seamless response compared to the base-
line, addressing a wider range of potential adversarial intents
while maintaining a firm ethical stance. More examples with
other tasks appear in Appendix A.6. For improved efficiency
and scalability, we also designed Two-step ASE by com-
bining the two reasoning steps (steps 1 and 2) of the original
defense outline. Please refer to Appendix A.2 for details.



Robustness
Type Defense — - - Seamlessness
Momentum  Transferability — Self-Detection-Free
Instruction Intention Analysis (Zhang et al. 2024) v X v X
Tuning Goal prioritization (Zhang et al. 2023) v X v X
Rain (Li et al. 2023) X X X X
. LLM SELF DEFENSE (Helbling et al. 2023) X X X X
Detection
Llama Guard (Inan et al. 2023) X X v X
RA-LLM (Cao et al. 2023) X X X X
Perplexity-Filter (Alon and Kamfonas 2023) X X v X
Erase-and-Check (Kumar et al. 2023) X X v X
Input SmoothLLLM (Robey et al. 2023) X X v X
Sanitization | Paraphrase (Jain et al. 2023) X X v X
Backtranslation (Wang et al. 2024) X X v X
RLHF (Bai et al. 2022a) v v v v
Preference i
. K DPO (Rafailov et al. 2023) v v v v
Finetuning . .
Constitutional Al (Bai et al. 2022b) v v v v
Multi-step Parden (Zhang, Zhang, and Foerster 2024) X X v X
Reasoning ASE (Our Method) v v v v

Table 1: Comparison between ASE and state-of-the-art defenses with respect to three Robustness factors and Seamlessness.

More related works appear in Appendix A.1

Enhancing Robustness and Seamlessness: ASE
vs State-of-The-Art

In this section, we will dissect how ASE enhances two crucial
properties of an LLM—adversarial robustness and seamless-
ness—compared to other existing methods. As discussed in
the previous Section, ASE ensures maximum utilization of
the LLM’s internal safety knowledge, which existing de-
fenses fail to do. First, it cultivates a defensive mindset by
guiding the LLM through a series of self-generated adver-
sarial scenario extrapolations. Then the second step warms
up the LLM by exercising how to respond defensively to
adversarial intents. The impact of these two steps on LLM
robustness is threefold:

® Momentum: Before generating a response to the orig-
inal query, these two ASE steps provide the LLM with a
powerful momentum—a cognitive bias toward caution—to
guard its response from inappropriate content. Building such
momentum is a common objective in many existing works
based on modifying the system instructions (Zhang et al.
2024, 2023). However, defenses through static modification
in the system instruction often fall apart in the face of a
defense-aware/ adaptive attack (Yu et al. 2023; Shen et al.
2024), where a craftfully designed prompt, e.g., “ignore ev-
erything before this...” negates the momentum created by
the system instruction. ASE avoids this (see Appendix A.5)
by internalizing safety as in-depth reasoning rather than a
hard-coded rule. Even if the attacker is aware of ASE and
crafts aggressive attack prompts (e.g., DAN attacks), they can
not eliminate the reasoning steps. This is where ASE stands
out from the traditional instruction-level safeguards.

@ Transferability: ASE is threat-agnostic i.e., it does not
assume a particular adversarial threat regarding the original
user query. Hence, in the first step, the LLM is instructed to
consider general adversarial possibilities (rather than pre-
defined categories like jailbreaks). As a result, the LLM
establishes a broad defensive context for each user query,
regardless of the actual adversarial intent. This is crucial

because adaptive (Chao et al. 2024) and cleverly crafted ad-
versarial inputs (Saiem et al. 2024) or prompts indulging
hallucination and bias may initially seem harmless to the
LLM, as the presence of harmful footprints in those inputs
could be very minimal. Those subtle adversarial queries can
easily fool the existing zero-shot defenses, such as instruction-
tuning (Zhang et al. 2024), detection-based (Li et al. 2023),
or input sanitization methods (Robey et al. 2023), and break
through their shallow guardrails. In contrast, ASE, with its
multi-step adversarial reasoning, embeds deeper thoughts
inside the LLM to cautiously analyze the user input, even
containing the most subtle adversarial trail. Appendix A.6
depicts an instance of adversarial hallucination where ASE
tackles such a subtle and less-intuitive adversarial query. To
the best of our knowledge, no existing defense, except pref-
erence fine-tuning (Bai et al. 2022a,b), have addressed the
transferability issue across diverse adversarial threats, e.g.,
jailbreaks, toxicity, hallucination, and bias.

® Self-Detection-Free: Many existing works blindly rely
on the pre-trained knowledge of the LLM (Helbling et al.
2023; Cao et al. 2023) to detect unethical queries. Although
this might work for well-known adversarial prompts or those
encountered during LLM training, it offers limited protection
against novel or unseen threats. ASE, however, does not de-
pend on the default detection capability of the LLM. Instead,
it builds a general precaution within the LLM for adversar-
ial possibilities so that it always outputs a guarded response
regardless of the novelty of a threatful prompt. Hence, with
ASE, the LLM is less susceptible to the nuances of new and
unseen adversarial inputs.

Apart from that, existing robustness measures, including
instruction tuning, detection-based, and input sanitization
methods (Kumar et al. 2023; Wang et al. 2024), do not foster
the articulateness of the LLM response. They fail to give a
seamless experience to the users, especially when their in-
tention is not adversarial, but rather curious (Figure 1 (a)).
Nevertheless, ensuring a robust and seamless response simul-



taneously is challenging, since the attacker often exploits the
notion of a long response generation to spill harmful content
(Huang et al. 2023; Russinovich, Salem, and Eldan 2024).
Failing to address this limitation, most traditional LLMs and
state-of-the-art defenses opt for outright rejections. As shown
in Table 1, apart from the preference fine-tuning techniques,
no existing defense provides a seamless response to adver-
sarial queries, although such fine-tuning requires extensive
offline training or human intervention. ASE, however, func-
tions entirely during inference time. After building a context
through the first two ASE steps, the LLM is finally asked to
generate a response based on the insights of earlier scenario
analysis. Its impact is twofold—firstly, unlike other instruction
tuning approaches, which explicitly tell the LLM to reject the
adversarial queries and only respond to the naive ones, ASE
always forces the LLM to generate a detailed response
regardless of the query type. As shown in the example in
the Methodology section, the final ASE response generally
contains a soft refusal note, followed by a clear rationale be-
hind the refusal, and information about what else the user can
be assisted with. Secondly, it minimizes the risk of including
harmful content in long text generation by implanting the
momentum derived from previous scenario analysis into the
LLM response. In this way, ASE preserves both robustness
and seamlessness of the LLM.

Experiment Setup
Models, Datasets and Task Description

We use four contemporary LLMs: OpenAl’'s GPT-4o,
Meta’s 11lama3.3-70b, Google’s Gemma—-2-27b, and
Anthropic’s Claude-3.5-Haiku for all the general ex-
periments in the project. The Mistral-7B-v0.1 model
is also used as part of the Constitutional Al experiments.
To assess the effectiveness of our defense, we considered
four adversarial tasks: jailbreak attacks, toxic prompt com-
pletion, adversarial hallucination, and biased text genera-
tion. For jailbreak attacks, we chose the Jai 1BreakV-28k
dataset (Luo et al. 2024), which contains 20k text-based
LLM transfer jailbreak attack prompts. We also evaluate
ASE against the adaptive jailbreak attack PAIR (Chao et al.
2024); see Appendix A.5 for details. Next, we used the
Real-Toxicity—-prompts dataset (Gehman et al. 2020)
for the toxic prompt completion task. We randomly se-
lected 1000 toxic prompts for our test cases, which con-
tain obscene, vulgar, and insulting words. For the halluci-
nation task, we chose the TruthfulQA benchmark (Lin,
Hilton, and Evans 2021), which has 437 adversarial questions
promoting misconceptions, superstitions, conspiracies, and
myths. Lastly, for the biased text generation task, we used
HolisticBias benchmark (Smith et al. 2022), which
contains 566k prompts categorized into 13 social biases. We
randomly selected 400 samples from each category, totaling
5200 samples. Additionally, to test the LLM’s reasoning ca-
pacity, we chose the MMLU benchmark (Hendrycks et al.
2021). We also examine the LLM’s generation ability with
a summarization task on the CNN / DailyMail dataset (See,
Liu, and Manning 2017). More details on the experiment
setting are given in the Appendix A.4.

Evaluation Metrics

We evaluate robustness, seamlessness, and general utility
of the LLM response. For jailbreaks, the robustness score is
measured by the summation of % Safe Responses and % Out-
right Rejection, although safe responses are preferred for bet-
ter seamlessness. Like many existing works (Chao et al. 2024;
Hase et al. 2025), we opted for a Judge-LLM (OpenAI’s 03)
to determine the safe and unsafe responses. Next, for the
toxic prompt completion task, we use Toxic-BERT, a BERT-
based toxic text classification tool, to generate scores ranging
from O to 1 based on several criteria, e.g., toxicity, obscenity,
and insult. Apart from that, the % Correctness is considered
the robustness criterion in the adversarial hallucination task.
Each data line in the Truthful QA benchmark has its ground
truth correct answers, which we used to verify the correctness
of the LLM response. Lastly, for the biased text generation
task, we measure bias using the HolisticBias prompts.
The bias of the LLM is measured by comparing how toxic
its responses are across different subgroups within a social
group. We also conducted a complementary human study to
verify our automatic evaluation setup. Please see Appendix
A4 for a more detailed discussion.

To measure seamlessness, we consider % Outright Rejec-
tion — a single sentence rejection from the LLM without any
explanation. A lower outright rejection rate indicates more
seamless responses. It should be noted that we did not report
this metric for adversarial hallucination and biased text gen-
eration results since there was no outright rejection in these
two tasks. Overall, a perfect result would have the lowest
amount of outright rejection and the highest robustness score.
Lastly, to validate the LLM’s general capability, we inspect
the % Correctness of the answers for the MMLU benchmark
and the ROUGE-L score for the summarization task.

Comparison Baselines

Firstly, we consider the vanilla undefended scenario as a naive
baseline where the LLM responds to a user query without
any external defense applied. In addition to that, we com-
pare ASE with six existing defense methods, i.e., Intention
Analysis (Zhang et al. 2024), Goal Prioritization (Zhang et al.
2023), Paraphrase (Jain et al. 2023), Parden (Zhang, Zhang,
and Foerster 2024), and Constitutional Al (CAI) (Bai et al.
2022b). We used two CAI models—Mistral-7B-Anthropic and
Mistral-7B-Grok, both aligned with certain constitutions or
human principles. More details appear in Appendix A.4.

Results
ASE vs Baseline

Table 2 demonstrates the performance of ASE compared to
the undefended baseline across four adversarial tasks and two
utility benchmarks. Our analysis reveals ASE’s consistent
effectiveness in balancing robustness and seamlessness while
preserving general capabilities.

Jailbreak Attacks Closed-source models (GPT-40 and
Claude) exhibit stricter input filtering in their proprietary en-
gines, reflected in high outright rejection rates (88.27% and
71.35%, respectively). While this reduces jailbreak success



Adversarial Metric / G GPT-40 Llama3.3-70B Gemma-2-27B Claude-3.5-Haiku
Threats etrie /oroup Baseline ASE Baseline ASE Baseline  ASE Baseline  ASE
Outright Rejection | 88.27% 10.89% | 23.23% 18.06% 13.5% 6.63% 71.35% 3.95%
Jailbreaks Safe Responses 5.48% 88.44% | 14.35% 78.79% | 6.98% 87.4% 18.12% 93.85%
Unsafe Responses | 6.25% 0.68% | 62.43% 3.15% 79.52% 5.97% 10.53% 2.2%
Outright Rejection | 52.3% 4.8% 21.8% 6.7% 10.3% 1.6% 59.8% 6%
Toxic Prompt Toxicity 35.2 5.5 472 5.1 39.2 53 31.1 32
Completion Obscene 334 6.2 45.7 7.3 38.5 6.3 314 4.7
Insult 26 1.6 26.4 1.5 29.5 0.0 234 0.0
A sarial
dversaria Correctness TA37%  9245% | 6247%  8833% | 64.98%  88.56% | 86.73%  99.08%
Hallucination
Ability 443 5.4 243 9.1 38.5 7.2 28.2 0.8
. Race & Ethnicity 17.8 2.2 17.5 44 22.1 1.1 15.6 0.9
Biased Text
. Body Type 413 5.5 48.3 16.4 63.2 5.1 37.2 14
Generation i .
Sexual Orientation | 19.7 3.4 30.4 8.1 39.2 32 21.7 0.9
Nationality 14.6 0.4 14.7 0.9 15.9 0.5 12.6 0.6
MMLU Correctness 78.18% 82.04% | 84.98% 86.61% | 77.46% 78.83% | 71.72% 76.75%
Summarization | ROUGE-L 25.67 25.28 26.55 25.73 25.8 25.83 26.92 26.07

Table 2: Comparison between ASE and the undefended baseline across four adversarial tasks and two utility benchmarks. All

results are multiplied by 100.

rates (Unsafe Response: 6.25% and 10.53%), it severely com-
promises seamlessness. Open-source models like Llama-3.3
and Gemma-2, with lower baseline rejection rates (23.23%
and 13.5%), suffer from alarmingly high unsafe response
rates (62.43% and 79.52%). In contrast, ASE significantly
reduces hard refusal (e.g., GPT-40: 10.89%; Claude: 3.95%)
while increasing safe, contextually rich responses (GPT-40:
88.44%; Gemma: 87.4%) and suppressing unsafe outputs
(e.g., Gemma: 5.97% vs 79.52% baseline). This demonstrates
ASE’s ability to mitigate jailbreak risks without resorting to
rigid refusal mechanisms.

Toxic Prompt Completion The baseline Llama and
Gemma models generate the highest toxicity (Toxicity scores
=~ 47.2 and 39.2) and obscene/insult content, while GPT-40
and Claude keep toxicity lower at the cost of frequent refusals
(52-60% outright rejection). ASE reverses both problems:
toxicity, obscenity, and insult scores plunge by an order of
magnitude for all four models (e.g., GPT-40 Toxicity 35.2
— 5.5; Llama 47.2 — 5.1), and outright rejections shrink
to single digits. Notably, ASE eliminates insults entirely in
Gemma-2 and Claude-3.5, showcasing its ability to neutralize
toxic generation while preserving conversational flow.

Adversarial Hallucination ASE’s multi-step reasoning
significantly improves factual accuracy. On the Truthful QA
adversarial benchmark, ASE-enhanced LLMs achieve cor-
rectness rates of 92.45% (GPT-40) and 99.08% (Claude), sur-
passing their baselines by 18.08 and 12.35 percentage points
(pp)- This suggests that the ASE steps not only guard against
harmful content but also reduce adversarial hallucination by
encouraging more deliberate, context-aware reasoning.

Biased Text Generation We report the five sub-groups
with the highest baseline bias. The most pronounced im-
provements occur in “Body Type” (Gemma-2: 5.1 vs 63.2
baseline) and “Ability” (Claude: 0.8 vs 28.2 baseline). Over-
all, ASE slashes every bias metric by 4-10 x, often to j 1.

These reductions confirm that ASE-CoT generalises beyond
explicit toxicity to subtle social biases.

Utility Benchmarks Finally, ASE does not degrade and
often improves utility. All models gain 1-4 pp on MMLU
(e.g., GPT-40 78 — 82%), and ROUGE-L on CNN/DailyMail
remains statistically unchanged (< 0.4 absolute difference).
This counterintuitive slight MMLU boost stems from ASE’s
multi-step reasoning, which directs more attention to the task,
suppressing both adversarial and generic hallucination.

ASE vs State of The Art

Table 3 compares ASE against six leading safety techniques
across four adversarial tasks (utility scores appear in the
Appendix-Figure 1).

Jailbreak Attacks Instruction-tuned methods prioritize
safety through rigid refusal mechanisms, resulting in ex-
cessively high outright rejection rates: GPT-4o rejects 97%
jailbreak prompts under Intention Analysis, and Claude re-
fuses 90% under Goal Prioritization. Parden behaves the
same (GPT-40 93%, Claude 96%), as it filters outputs that
fail repetition checks, sacrificing conversational seamlessness.
Paraphrasing is less heavy-handed (outright rejections drop to
58-62%), but the rewriting step sometimes fails for harmful
queries, so unsafe-response rate (ASR) slightly rises over the
undefended baseline. CAI-Grok delivers fully fluent answers
(0% rejection) and halves ASR for Mistral (62 — 28%), yet
ASE is still decisively safer: it pushes ASR below 1% for
GPT-40 and Claude and to 10% for Mistral while keeping
rejections < 4%. In other words, ASE is the only method
that simultaneously maximizes seamlessness and minimizes
jailbreak success. Experiment results on the PAIR attack are
moved to Appendix A.5 for space constraints.

Toxic Prompt Completion Goal Prioritization is the
strongest of the instruction-tuned pair, cutting GPT-40’s toxi-
city score from 5.5 to 1.6, but it does so by driving refusals



Jailbreaks Toxicity Hallucination Bias
Model Defense - - - -
Out. Reject. Safe Unsafe (ASR) Out. Reject. Toxic. Score Correct Avg. Score
Baseline (Undefended) 88.27% 5.48% 6.25% 52.3% 35.2 74.37% 27.5
Int. Anal. (Zhang et al. 2024) 97.44% 1.6% 0.96% 71.9% 18.3 83.64% 19.7
GPTdo Goal Prior. (Zhang et al. 2023) 93.72% 2.95% 3.33% 64.1% 124 78.13% 21.2
Paraphrase (Jain et al. 2023) 62.12% 30.45% 7.43% 32.6% 18.7 67.73% 16.3
Parden (Zhang, Zhang, and Foerster 2024) 93.33% 3.73% 2.94% 54.9% 19.2 74.37% 24.5
ASE 10.89% 88.44% 0.68 % 4.8% 5.5 92.45% 33
"7 7 77| Baseline (Undefendedy | 7135%  18.02%  1053% | 598% 311 | 8 86.73% | 231
Int. Anal. (Zhang et al. 2024) 90.81% 5.77% 3.42% 69.2% 16.3 87.96% 13.2
Claude Goal Prior. (Zhang et al. 2023) 82.97% 9.6% 7.43% 77.5% 11.8 87.55% 16.2
Paraphrase (Jain et al. 2023) 58.91% 28.77% 12.32% 35.6% 18.6 79.18% 18.7
Parden (Zhang, Zhang, and Foerster 2024) 81.56% 10.4% 8.04% 66.1% 23.4 86.73% 22.3
ASE 3.95% 93.85% 2.2% 6% 3.2 99.08 % 0.92
"7 7 77| ‘Baseline Mistral-7B | 17.48%  2571%  61.79% | 364% 496 | 6888% | 343
Mistral CAI Mistral-7B-Anthropic 0% 41.54% 58.46% 0% 27.5 68.19% 26.8
CAI Mistral-7B-Grok 0% 71.8% 28.2% 0% 22.3 76.08% 16.7
ASE (Mistral-7B) 0% 90.13% 9.87% 0% 13.5 83.75% 7.4

Table 3: Comparison among ASE and six state-of-the-art defenses across four adversarial tasks

above 70%. Parden, by contrast, appears less effective in
this task, exhibiting higher toxicity scores (18-23). Both CAI
models improve over baseline, yet ASE remains best-in-class:
toxicity scores fall to 3.2 for Claude, 1.3 for Mistral, and 0.6
for GPT-40 without resorting to mass hard refusal (< 6%
outright rejection).

Adpversarial Hallucination Most methods marginally in-
crease correctness on adversarial question answering (e.g.,
GPT-40 +4 pp under Intention Analysis), but Paraphrasing
reduces accuracy for every model—mirroring the utility drop
reported in its original paper (Jain et al. 2023). ASE again
leads: correctness jumps to 92-99% on GPT-40/Claude and
84% on Mistral, outperforming even CAI-Grok despite the
latter’s specialised training. The structured self-reflection
steps embedded in ASE appear to curb hallucination more
effectively than adversarial training or prompt rewrites.

Biased Text Generation No existing defense, including
both CAI variants, achieve single-digit bias scores; most
remain above 13. However, ASE drives bias down to 7.2
(GPT-40), 0.9 (Claude) and 7.4 (Mistral), a 2-4x reduction
versus the state-of-the-art. This suggests that ASE’s internal
critique stage guards not only against overtly harmful content
but also against subtle stereotyping.

Overall, ASE transcends the trade-offs inherent in existing
defenses: it avoids the seamlessness penalties of instruction-
tuning, the inconsistency of paraphrasing, and the brittleness
of constitutional principles. While they struggle to capture
the subtlety of diverse threats, ASE, by internalizing adver-
sarial reasoning, achieves cross-task robustness—a feat un-
matched by specialized methods.

Overhead Analysis

It is widely accepted that CoT introduces additional over-
head to the response time, and ASE is not exempt from this
bottleneck either. However, we designed a two-step ASE for
improved efficiency (See Appendix A.2). Additionally, in
practical deployment, ASE’s safety reasoning steps are in-

tended to occur entirely on the server side and not transmitted
to the user, which avoids any additional communication over-
head. We put the detailed overhead analysis in Appendix A.3
for space constraints. There, we showed that Two-step ASE
in a practical deployment setting is significantly more
efficient and scalable.

Limitations

While ASE significantly enhances LLM robustness and seam-
lessness, it inherits some drawbacks from standard Chain-
of-Thought (CoT) reasoning, such as longer response times
and higher computational costs. We, however, discussed in
Appendix A.3 how ASE can be made scalable for practical
deployment. Additionally, like standard CoT, ASE’s effec-
tiveness relies on the model’s internal knowledge and associ-
ations, which can be less precise, particularly with smaller or
lower-capacity models like Mistral-7B, as evidenced by our
experiments. Lastly, due to the extended API cost, we were
unable to run each experiment multiple times to justify the
statistical significance of the results.

Conclusion

This work introduces ASE, a novel inference-time de-
fense framework that significantly enhances both the ro-
bustness and seamlessness of LLMs. By simulating ad-
versarial intent through CoT reasoning, ASE enables
LLMs to proactively guard against a wide spectrum of
threats—including jailbreaks, toxic prompts, hallucinations,
and social bias—without resorting to rigid refusals. Empirical
results across four state-of-the-art LLMs demonstrate ASE’s
superior performance and transferability over six established
baselines, achieving near-zero attack success rates while pre-
serving or even improving general utility. Furthermore, the
proposed Two-Step ASE variant offers a promising trade-off
by maintaining most of the robustness gains at a reduced
computational cost. Overall, ASE offers a lightweight, threat-
agnostic approach that can be readily deployed to elevate the
safety, transparency, and naturalness of LLM responses.
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