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Abstract
Multi-view indoor radar perception has drawn attention due to its cost-effectiveness and low
privacy risks. Existing methods often rely on implicit cross-view radar feature association,
such as proposal pairing in RFMask or query-to- feature cross-attention in RETR, which
can lead to ambiguous feature matches and degraded detection in complex in- door scenes.
To address these limitations, we propose REXO (multi-view Radar object dEtection with
3D bounding boX diffusiOn), which lifts the 2D bounding box (BBox) diffusion process of
DiffusionDet into the 3D radar space. REXO utilizes these noisy 3D BBoxes to guide an
explicit cross-view radar feature association, enhancing the cross- view radar-conditioned
denoising process. By accounting for prior knowledge that the person is in contact with the
ground, REXO reduces the number of diffusion parameters by deter- mining them from this
prior. Evaluated on two open indoor radar datasets, our approach surpasses state-of-the-art
methods by a margin of +4.22 AP on the HIBER dataset and +11.02 AP on the MMVR
dataset.
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Abstract

Multi-view indoor radar perception has drawn attention due
to its cost-effectiveness and low privacy risks. Existing meth-
ods often rely on implicit cross-view radar feature asso-
ciation, such as proposal pairing in RFMask or query-to-
feature cross-attention in RETR, which can lead to ambigu-
ous feature matches and degraded detection in complex in-
door scenes. To address these limitations, we propose REXO
(multi-view Radar object dEtection with 3D bounding boX
diffusiOn), which lifts the 2D bounding box (BBox) dif-
fusion process of DiffusionDet into the 3D radar space.
REXO utilizes these noisy 3D BBoxes to guide an explicit
cross-view radar feature association, enhancing the cross-
view radar-conditioned denoising process. By accounting for
prior knowledge that the person is in contact with the ground,
REXO reduces the number of diffusion parameters by deter-
mining them from this prior. Evaluated on two open indoor
radar datasets, our approach surpasses state-of-the-art meth-
ods by a margin of +4.22 AP on the HIBER dataset and
+11.02 AP on the MMVR dataset.

1 Introduction
Radar perception has received increasing attention due to its
robustness in low-light, adversarial weather, and hazardous
conditions (e.g., smoke) (Paek et al. 2022; Yao et al. 2024;
Lu et al. 2020; Sun, Petropulu, and Poor 2020; Pandhari-
pande et al. 2023; Skog et al. 2024). Depending on the ap-
plication, operational specifications, and downstream tasks,
radar data can be represented in different forms such as
sparse detection points (Zhao et al. 2017; Sengupta et al.
2020; Yang et al. 2023b), reflection heatmaps (Adib et al.
2015; Zhao et al. 2018a; Wu et al. 2023), Doppler signa-
tures, and raw analog-to-digital converter (ADC) data, each
with unique characteristics and feature granularity.

For indoor radar perception, single-view and multi-view
heatmaps that combine horizontal (depth-horizontal) and
vertical (depth-vertical) projections enable object detec-
tion, pose estimation, and segmentation on a 2D image
plane (Zhao et al. 2018a; Lee et al. 2023; Wu et al. 2023;
Rahman et al. 2024). RF-Pose (Zhao et al. 2018a,b) first
fused both views with a convolutional autoencoder to regress
2D human keypoints. RFMask (Wu et al. 2023) grafted
Faster R-CNN (Ren et al. 2017) onto horizontal heatmaps:
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Figure 1: (a) RFMask (Wu et al. 2023) generates
horizontal-view proposals with fixed-height vertical boxes;
(b) RETR (Yataka et al. 2024) implicitly links queries to
cross-view features via decoder cross-attention; (c) Diffu-
sionDet (Chen et al. 2023b) adapted to horizontal radar al-
lows 2D denoising but needs extra pairing with fixed-height
vertical boxes; (d) REXO (ours) performs diffusion directly
in 3D radar space for simple, explicit cross-view association.

its region-proposal network produces horizontal candidates
that are paired with fixed-height vertical windows to avoid
exhaustive cross-view association (Fig. 1 (a)). More re-
cently, the radar detection transformer (RETR) (Yataka
et al. 2024) adopted the DETR (Carion et al. 2020). De-
coder queries simultaneously attend to both views through
cross-attention (Fig. 1 (b)) and are directly regressed to 3D
bounding boxes (BBoxes) that are classified as person or
background.

On the other hand, image-based object detection has been
redefined as a generative denoising process, where random
noisy 2D BBoxes are iteratively refined through a diffu-
sion denoising process to yield final clean BBox predic-
tions (Chen et al. 2023b). Referred to as DiffusionDet, it
decouples training and inference, and generally surpasses



query-based detectors. When ported to horizontal radar
heatmaps (Fig. 1 (c)), it denoises 2D boxes but still requires
the fixed-height vertical pairing used by RFMask.

We therefore lift the diffusion procedure from a 2D plane
(image or horizontal radar view) in DiffusionDet to the full
3D radar space, as illustrated in Fig. 1 (d). This simple lift-
ing facilitates cross-view radar feature association and radar-
conditioned BBox denoising, while enabling the integra-
tion of geometry-aware loss functions and prior constraints
on the 3D BBox. Consequently, we introduce the proposed
framework as Radar object dEtection with 3D bounding
boX diffusiOn (REXO) with the following contributions:

1. 2D-to-3D Lifting with Explicit Cross-View Associa-
tion: At each diffusion timestep, noisy 3D BBoxes are
projected onto every radar view, and RoI-aligned crops
supply view-specific features. This BBox-guided associ-
ation grows linearly with the number of views, whereas
proposal- or query-based schemes grow quadratically.

2. Cross-View Radar-Conditioned BBox Detection:
While the cross-view feature association is simplified
due to the 2D-to-3D lifting, the denoising process
may be more challenging. In turn, the associated radar
features are used as conditioning to alleviate the more
challenging 3D BBox denoising. To the best of our
knowledge, REXO is the first diffusion model in the
radar perception field conditioned on multi-view radar.

3. Ground-Level Constraint: By using prior knowledge
that the person is in contact with the ground, the param-
eters of the 3D BBox are reduced. Based on this, each
noise-free 3D BBox preserves geometric constraints in
the image plane to be transformed.

We demonstrate the effectiveness of our contributions
through evaluations on two open radar datasets.

2 Related Work
Radar-based Object Detection: Learning-based meth-
ods have advanced radar detection over traditional model-
based approaches (Kay 1998), benefiting from open large-
scale radar point cloud datasets like nuScenes (Caesar et al.
2020), Oxford RobotCar (Barnes et al. 2020), and RADI-
ATE (Sheeny et al. 2021). Image-based and point/voxel-
based backbones (He et al. 2016; Shi, Li, and Ma 2022)
extract semantic features from radar detection points, gen-
erate region proposals, and localize objects. High-resolution
heatmaps (e.g., K-Radar (Paek et al. 2022), HIBER (Wu
et al. 2023), MMVR (Rahman et al. 2024)) and raw ADC
data (Yang et al. 2023a) have also been leveraged by pre-
viously mentioned RF-Pose (Zhao et al. 2018a), RFMask
(Wu et al. 2023), and RETR (Yataka et al. 2024). Cube-
Learn (Zhao et al. 2023) replaces Fourier transforms with
learnable modules for an end-to-end radar pipeline, while
RAMP-CNN (Gao et al. 2021) enhances range-angle feature
extraction via Doppler cues. More recently, diffusion mod-
els have been explored for radar applications (Zhang et al.
2024; Luan et al. 2024; Chi et al. 2024; Fan et al. 2024;
Wu et al. 2024). Most efforts, e.g., Radar-Diffusion (Zhang
et al. 2024; Luan et al. 2024) and DiffRadar (Wu et al. 2024),
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Figure 2: Generation of multi-view heatmaps from raw data.

focus on reconstructing LiDAR-like point clouds from low-
resolution radar data, while mmDiff (Fan et al. 2024) esti-
mates and refines pose keypoints from sparse radar points
via diffusion process.

Diffusion-based Object Detection: Diffusion models
(Song, Meng, and Ermon 2021; Song and Ermon 2019;
Rombach et al. 2022; Song et al. 2023) have shown im-
pressive results in tasks such as image and video genera-
tion (Ho et al. 2022; Blattmann et al. 2023) and multi-view
synthesis (Chen et al. 2023a; Yu et al. 2023). For percep-
tion tasks, DiffusionDet (Chen et al. 2023b) first reformu-
lates object detection as a generative denoising process and
proposes to model the 2D BBoxes as random parameters
in the diffusion process. Diffusion-SS3D (Ho et al. 2023)
proposes a diffusion-based detector to enhance the quality
of pseudo-labels in semi-supervised 3D object detection by
integrating it into a teacher-student framework. CLIFF (Li
et al. 2024) further leverages language models to enhance
diffusion-based models for open-vocabulary object detec-
tion. Diffusion models are also considered for 3D object de-
tection (XU et al. 2024) in the context of LiDAR-Camera fu-
sion (Xiang, Dräger, and Zhang 2023) and other tasks such
as pose estimation (Tan et al. 2024) and semantic segmenta-
tion (Gu, Chen, and Xu 2024; Amit et al. 2022).

3 Preliminary
Multi-View Radar Heatmaps derive from raw data cap-
tured by horizontal and vertical radar arrays, where sampling
reflected pulses across each array builds a 3D data cube of
ADC samples, pulse samples and array elements (Fig. 2).
A 3D FFT transforms each cube into radar spectra along
range, Doppler, and angle (azimuth or elevation). Integrat-
ing over Doppler yields 2D polar heatmaps (range–azimuth
and range–elevation), which are then mapped to Cartesian
coordinates. The resulting heatmaps for frame m are de-
noted Y hor(m) ∈ RW×D and Y ver(m) ∈ RH×D. Stack-
ing M consecutive frames gives Y hor ∈ RM×W×D and
Y ver ∈ RM×H×D for temporal modeling.

Diffusion Models such as the denoising diffusion proba-
bilistic model (DDPM) (Ho, Jain, and Abbeel 2020) and the
denoising diffusion implicit model (DDIM) (Song, Meng,
and Ermon 2021), define Markovian or non-Markovian for-
ward processes by gradually adding noise to samples x0,



e.g., image pixels,

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
, (1)

where t ∈ {0, . . . , T} and ᾱt =
∏t

s=0 (1− βs) with
βs denoting the noise variance schedule. At time t, xt =√
ᾱtx0 +

√
(1− ᾱt)ϵ with ϵ ∼ N (0, I).

During training, a noise prediction network is trained
to estimate ϵ from xt and time index t by minimizing
minθ ∥ϵθ(xt, t) − ϵ∥2, where θ represents the trainable
weights. During inference, a random xT is drawn from the
standard Gaussian distribution and iteratively denoised us-
ing the trained ϵθ(xt, t) in reverse time: xT → · · · → xt →
xt−1 → · · · → x0. Sampling strategies such as DDPM (Ho,
Jain, and Abbeel 2020)

xt−1 =

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
/
√
αt + σtϵt, (2)

with ϵt ∼ N (0, I), and DDIM (Song, Meng, and Ermon
2021) can be used to trade off between quality and speed.
More details are in Appendix A.

4 REXO: BBox Diffusion in 3D Radar Space
DiffusionDet (Chen et al. 2023b) reformulates object de-
tection as a denoising diffusion process, treating xt as
2D BBox parameters instead of image pixels. As shown
in Fig. 3, we extend this to multi-view radar by lift-
ing xt to 3D BBoxes in radar coordinates: xt ={
ctx, c

t
y, c

t
z, w

t, ht, dt
}⊤ ∈ R6, where

(
ctx, c

t
y, c

t
z

)
defines

the center and (wt, ht, dt) the size at time t in the Carte-
sian {horizontal, vertical, depth} space. Conditioned
on radar heatmaps {Y hor,Y ver}, REXO performs 3D BBox
diffusion in two phases (Fig. 3): 1) a forward process that
adds noise to ground-truth (GT) BBoxes x0 to produce ran-
dom xT during training, and 2) a reverse process that de-
noises random xT to estimate noise-free x̂0 during infer-
ence. The denoised BBoxes are also projected to the 2D
image plane for supervision in both radar and image do-
mains. We describe REXO in four parts: training, inference,
ground-level constraint and loss.

4.1 Training
We describe REXO training, as illustrated in Fig. 4.

Backbone: Taking the two radar heatmaps Y hor and Y ver

as inputs, a backbone network (e.g., ResNet (He et al.
2016)) generates horizontal-view and vertical-view radar
feature maps separately: Zhor = backbone (Y hor) and
Zver = backbone (Y ver), where learnable parameters
in the backbone are shared across both views. Each fea-
ture map is generated as L multi-scale feature maps in
RC×W

sl ×
D
sl or RC×H

sl×
D
sl by using feature pyramid net-

work (Lin et al. 2017) where C, s and l ∈ {1, · · · , L} rep-
resent the number of channels, downsampling ratio over the
spatial dimension and the pyramid level, respectively.

Initialization of x0 and Forward Process to xt: For
a given number of BBoxes Ntrain to be detected, x0 is
simply initialized by the 3D BBox GT in the radar space
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Figure 3: REXO: 1) 3D BBox diffusion process in the radar
space; 2) Geometric transformation and 3D-to-2D projec-
tion onto the image plane for geometry-aware supervision.

xradar = {cx, cy, cz, w, h, d}⊤ ∈ R6 and padded with ran-
dom 3D BBoxes xrand ∼ N (0, I6) if Ntrain > NGT. The
diffused 3D BBox xt at time t can be generated as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (3)

where ϵ ∼ N (0, I6) and ᾱt is defined in Section 3.

Cross-View Radar-Conditioned BBox Detector
DenoisingDetθ includes explicit cross-view feature
association and radar-conditioned 3D BBox detector.

1) Explicit cross-view feature association: Given the noisy
3D BBox xt in (3), the xt-guided cross-view feature associ-
ation first projects xt onto the two radar views, resulting in
two 2D BBoxes (purple solid lines of Fig. 1 (d)),

xt,hor = {ctx, ctz, wt, dt}⊤,xt,ver = {cty, ctz, ht, dt}⊤, (4)

and then crops out the cross-view 2D radar features

Z
crop
hor = RoIAlign(Zhor,xt,hor) ∈ RC×r×r,

Zcrop
ver = RoIAlign(Zver,xt,ver) ∈ RC×r×r, (5)

via a standard ROIAlign operation (He et al. 2017), where r
denotes a fixed spatial resolution, e.g., r = 7. At time t, this
process yields Ntrain pairs of associated radar features

Z
crop
radar = {Zcrop

hor ,Zcrop
ver } ∈ RC×r×2r, (6)

each corresponding to a noisy 3D BBox xt.
2) Radar-conditioned 3D BBox detector: Conditioned on

Z
crop
radar, a BBox detector with learnable weights θ is trained

to estimate the BBox x̂0 and the class scores p̂ as

{x̂0, p̂} = BBoxDetθ (Z
crop
radar, t) , (7)

where t specifies the timestep embedding. In our indoor
setting, we use a two-class softmax over {person, back-
ground}. The class-head can extend to C classes (including
background) by using a C-way softmax with cross-entropy.

Grouping all the steps from (4) to (7) results in the
DenoisingDetθ module of Fig. 4:

{x̂0, p̂} = DenoisingDetθ (xt, t,Zhor,Zver) , (8)

where all trainable weights θ are inherited from the BBox
detector BBoxDetθ. Further details are in Appendix B.



Ground-Level Constraint
H

o
ri
zo

n
ta

l
V
e
rt

ic
al

B
ackb

o
n
e

B
ackb

o
n
e

Cross-View Radar 

Conditioned BBox 

Detector

𝐃𝐞𝐧𝐨𝐢𝐬𝐢𝐧𝐠𝐃𝐞𝐭𝜽

3D BBox Diffusion 

Process

𝒁hor

𝒁ver

෡𝒃image

Geometric

Transformation

Learnable Module

Non-Learnable Module

𝒙𝑡 , 𝑡

GT 3D BBoxes
𝒙0

𝒙𝑡

Diffused and 

Random BBoxes

𝒀hor, 𝒀ver

3D-to-2D Projection

𝐑𝐞𝐟𝐢𝐧𝐞𝐦𝐞𝐧𝐭𝜙

ෝ𝒙0

𝒙𝑡 𝑡 = 1,… , 𝑇

y

0
Ground

x

non-priorprior

Radar Coordinate Camera Coordinate

Figure 4: REXO training: 1) A shared backbone extracts horizontal/vertical radar features {Zhor,Zver}; 2) Ground-truth 3D
BBoxes x0 are diffused to noisy xt; 3) xt is grounded using a ground-level constraint; 4) DenoisingDetθ projects xt onto
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3D-to-2D Projection with Learnable Refinement.
REXO further projects x̂0 in (8) into the 2D image plane
through the 3D camera coordinate system via a calibrated
geometric transformation T . By setting x̂radar = x̂0, we
convert each of the 8 corners of the corresponding 3D BBox
x̂radar using

xi
camera = Rx̂i

radar + v, i = 1, 2, · · · , 8, (9)

where x̂i
radar is the i-th corner of x̂radar, R is the calibrated

3D rotation matrix, and v is the calibrated translation vec-
tor. Each 3D corner xi

camera is projected to the image plane
through the calibrated pinhole model, and the extrema of the
eight projected points yield the initial box binit

binit =
{
c̄x, c̄y, w̄, h̄

}⊤
= projinit (xcamera) . (10)

Since binit systematically overshoots the ground-truth ex-
tent (see Appendix C), we attach a refinement module with
learnable parameter ϕ to obtain the offset:

∆b =
{
∆x̄,∆ȳ,∆w̄,∆h̄

}⊤
= Refinementϕ (f) , (11)

where f = Predictor (et,Z
crop
radar) is the time-dependent

feature. et denotes the timestep embedding (Ho, Jain, and
Abbeel 2020) and Predictor denotes the time-dependent
predictor (Chen et al. 2023b) with the radar feature and
the embedding (see Appendix B for more details). Apply-
ing these offsets produces the final image-plane box b̂image,
achieving tighter alignment without sacrificing geometric
consistency.

b̂image = {c̄x + w̄∆x̄, c̄y + h̄∆ȳ, e∆w̄w̄, e∆h̄h̄}⊤. (12)

4.2 Inference
REXO infers objects by reversing the diffusion process.
Given a target count N , we sample random 3D boxes xT ∼
N (0, I6) in the radar coordinate system at t = T and de-
noise them down to t = 1.

Denoising Process in 3D Radar Space: With xt and
radar features {Zhor,Zver}, the trained DenoisingDetθ
in (8) predicts x̂0, giving

pθ (xt−1 | xt,Zhor,Zver) = N (
√
αt−1x0 + γϵ

(t)
θ , σ2

t I6),

xt−1 =
√
αt−1x̂0 +

√
1− αt−1 − σ2

t · ϵ
(t)
θ + σtϵt, (13)

where ϵ
(t)
θ =

(
xt −

√
αtx̂0

)
/
√
1− αt specifies the direc-

tion pointing to the noisy BBox xt at time t, and ϵt ∼
N (0, I6) represents a random BBox. Note that the denois-
ing step is inherently conditioned on the cross-view radar
feature maps via the estimated x̂0 from the DenoisingDetθ
module.

2D Image Plane BBox Prediction: After the final step,
x0 (= x̂radar) is converted to image plane boxes b̂image via
the radar–to-camera transform in (9) and the 3D-to-2D pro-
jection of (12). Boxes whose class scores exceed a threshold
are output as detections.

4.3 Ground-Level Constraint
Since the BBoxes are now explicitly defined in the 3D radar
coordinate system, it is natural to incorporate prior knowl-
edge as a constraint into the diffusion process. Unlike Diffu-
sionDet and RETR, we enforce the reduced five 3D parame-
ters by grounding with ht/2, allowing 3D and 2D gradients
to flow jointly and guiding the denoising process under strict
geometric constraints. This ensures that objects are correctly
positioned on the floor, reflecting realistic spatial relation-
ships (see the Ground-Level Constraint in Fig. 4):

xt =
{
ctx, h

t/2, ctz, w
t, ht, dt

}⊤
. (14)

Using this constrained xt as in (3), REXO predicts Ntrain

3D BBoxes x̂radar and 2D BBoxes b̂image, while preserving
geometric consistency.

4.4 Loss Function
To ensure consistency between the radar and image plane
representations, we adopt a simplified scheme of the Tri-
plane loss (Yataka et al. 2024) that directly calculates the
loss of 3D BBox. REXO employs the Hungarian match
cost (Kuhn 1955) with a geometry-aware loss function LGA

box

computed in both the 3D and 2D spaces:

LGA
box = λ3DL3D

box (xradar, x̂radar)+λ2DL2D
box(bimage, b̂image),

(15)



Table 1: Evaluation on 4 data splits of the MMVR. The gray hatch represents the best performance for each metric.

Method
P1S1 P1S2 P2S1 P2S2

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

RFMask 25.53 67.30 15.86 24.46 66.82 11.22 31.37 61.50 27.48 6.03 22.77 0.88
RFMask3D 34.84 69.57 31.74 30.75 76.48 16.23 39.89 80.38 35.35 12.26 37.01 4.34
DETR 35.64 77.59 28.00 28.51 75.90 13.42 29.53 63.08 25.35 9.29 34.69 2.49
RETR 39.62 80.55 33.84 30.16 78.95 15.17 46.75 83.80 46.06 12.45 41.30 4.96

REXO 39.23 73.46 37.83 36.48 87.02 20.51 48.35 85.89 48.38 23.47 64.41 10.44

where the 3D/2D BBox loss is defined as L∗
box(x, x̂) =

λGIoULGIoU(x, x̂) + λL1LL1(x, x̂) representing a weighted
combination of the generalized intersection over union
(GIoU) loss LGIoU (Rezatofighi et al. 2019) and the ℓ1 loss
LL1 , and the coefficients λ balance the relative contribution
of each loss term. REXO determines the optimal assignment
σ∗
GA by minimizing the matching cost that combines the orig-

inal classification cost Lclass and LGA
box.

5 Experiments
We demonstrate the effectiveness of REXO through evalua-
tions on two open radar datasets: HIBER (Wu et al. 2023)
and MMVR (Rahman et al. 2024).

5.1 Setup
High-Resolution Indoor Radar Datasets: MMVR in-
cludes multi-view radar heatmaps collected from over 25
human subjects across 6 rooms over a span of 9 days. It
consists of 345K data frames collected in 2 protocols: 1)
Protocol 1 (P1: Open Foreground) with 107.9K frames in
an open-foreground room with a single subject; and 2) Pro-
tocol 2 (P2: Cluttered Space) with 237.9K frames in 5 clut-
tered rooms with single and multiple subjects. Under each
protocol, two data splits are defined to evaluate radar per-
ception performance: 1) S1: a random data split and 2) S2: a
cross-session, unseen split.

HIBER, partially released, includes multi-view radar
heatmaps from 10 human subjects in a single room but from
different angles with multiple data splits. In our evalua-
tion, we used the “WALK” data split, consisting of 73.5K
data frames with one subject walking in the room. For both
datasets, annotations such as 3D BBoxes in the radar coor-
dinate system and 2D image plane BBoxes are provided to
train the baseline methods and REXO.

Implementation: We consider RFMask (Wu et al. 2023),
DETR (Carion et al. 2020) and RETR (Yataka et al. 2024) as
baseline methods. Additionally, we evaluate a 3D extension
of RFMask, referred to as RFMask3D (see Appendix D for
details), that takes the two radar views as inputs for BBox
prediction. Since RFMask and DETR originally compute
the BBox loss only in the 2D horizontal radar plane and the
2D image plane, respectively, we follow the implementation
of RETR and enhance both methods with a unified bi-plane
BBox loss. Furthermore, we introduce a DETR variant with
a top-K feature selection, allowing it to take features from
both horizontal and vertical heatmaps as input. For RETR,
we set the number of object queries to 10. To ensure a fair
comparison, we also set Ntrain = 10 for REXO during

Table 2: Evaluation on the WALK data split of the HIBER.

Method
WALK

AP AP50 AP75

RFMask 17.77 52.46 6.78
RFMask3D 16.58 48.10 6.53
DETR 14.45 47.33 4.25
RETR 22.09 59.83 10.99

REXO 25.33 62.55 15.83
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Figure 5: AP breakdowns with IoU histograms on MMVR.

training. All methods are evaluated using M = 4 consec-
utive radar frames. Additional hyperparameter settings are
provided in Appendix E.

Metrics: We evaluate performance using average preci-
sion (AP) at two IoU thresholds of 0.5 (AP50) and 0.75
(AP75), along with the mean AP (AP) computed over thresh-
olds in the range of [0.5 : 0.05 : 0.95]. For detailed metric
definitions, refer to Appendix F.

5.2 Main Results
MMVR: Table 1 presents the results under the four com-
binations of two protocols and two data splits of the MMVR
dataset. REXO demonstrates significant performance im-
provements in P1S2, P2S1, and P2S2. Notably, in P2S2
where the test radar frames contain an entirely unseen envi-
ronment during training, REXO outperforms the best base-
line RETR by a large margin, boosting AP from 12.45
to 23.47, highlighting its strong generalization capabilities.
Surprisingly, under the simplest combination P1S1 where a
single subject is recorded in the same room with a random
data split, REXO’s performance is slightly lower than that
of RETR, particularly on the metric AP50.

To understand these differences, we break down the AP
into IoU histograms for (a) P1S1 and (b) P1S2, as illustrated
in Fig. 5, where blue and red histograms represent the IoU



λ3D λ2D AP

0.00 1.00 0.98
0.50 1.00 4.23
1.00 0.10 15.55
1.00 0.50 19.38
1.00 1.00 23.47

(a) Strong 2D (λ2D)/3D
(λ3D) supervision im-
proves performance.

MethodNtrain AP

RETR 10 12.45
20 9.85
50 8.49

REXO 10 23.47
20 20.94
50 19.67

(b) # of BBoxes for
training. REXO re-
mains stable.

N REXO RETR

2 8.87 8.36
10 23.48 12.45
20 23.00 6.57
40 22.32 3.63
60 21.94 2.65
80 21.70 2.16

(c) # of BBoxes for in-
ference. REXO sustains
its AP as N increases.

Steps AP

1 23.48
3 24.01
5 24.12
7 24.17
9 24.25

10 24.27

(d) # of denoising steps.
More steps slightly im-
prove detection.

Method AP

DiffusionDet 20.75
REXO (Horizontal) 22.75
REXO (Vertical) 7.18
REXO (Both Views) 23.47

(e) DiffusionDet vs. single-
/multi-view REXO. Multi-
view achieves the best AP.

Table 5: Ablation study under P2S2 on MMVR.

Grounding AP (P2S2) AP (WALK)

× 22.67 21.11
✓ 23.47 25.33

Table 3: The ground-level con-
straint can improve the detection
performance on both datasets.

D [cm] AP

D ≤ 20 9.93
D > 20 23.47

Table 4: AP drops
when depth difference
D is less than 20 cm.
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(a) Seen Frames: REXO exhibits
a similar histogram to that ob-
served in P1S2.
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more high-quality predictions
than RETR.

Figure 6: AP breakdowns with IoU histograms on MMVR.

distributions for RETR and REXO, respectively, and the left
and right dotted lines mark the two IoU thresholds at 0.5
and 0.75. It is seen that in Fig. 5a, the excess of RETR over
REXO (blue areas) over the IoU interval [0.5, 0.75] is greater
than that of REXO over RETR (pink areas) over the inter-
val [0.75, 1.0], explaining RETR’s higher AP50 under P1S1.
Meanwhile, REXO has better AP75 as it provides more high-
quality predictions with IoU above 0.75.

HIBER: Table 2 presents the results evaluated on the
“WALK” data split of the HIBER dataset. For baselines,
RFMask, RFMask3D, and DETR show comparable perfor-
mance, while RETR exhibits the strongest baseline perfor-
mance. REXO outperforms RETR across all evaluation met-
rics with an AP of 25.33, surpassing RETR’s AP at 22.09.
REXO attains AP50 of 62.55 and AP75 of 15.83, demonstrat-
ing strong performance in both low- and high-IoU BBox
performance evaluations. This ability to consistently outper-
form the baselines across different IoU thresholds indicates
REXO’s robustness in capturing object localization with rel-
atively better accuracy.

5.3 Ablation Study
We present ablation studies for REXO under the most chal-
lenging “P2S2” of the MMVR dataset. Full results are pro-
vided in Appendix G.

Effectiveness of Ground-Level Constraint: Table 3 re-
ports the effect of ground-level constraint. In MMVR, the
subject stands on the ground or sits in a chair, so the con-
straint is effective. The table shows that we also evaluated
the HIBER dataset as a supplement and observed a signif-
icant improvement in performance. It should be noted that
constraint is not always accurate when the subject jumps or
stands on an obstacle, but it is still effective in terms of sta-
bilizing inference.

2D vs. 3D Supervision Strength: Table 5a compares the
various weight parameters λ3D and λ2D in (15). The results
highlight the necessity of accounting for the loss of both the
3D BBox and the 2D BBox, and the importance of the pre-
diction accuracy of the 3D BBox, especially in the radar co-
ordinate system, for the prediction accuracy of the 2D BBox
on the image plane. The image plane supervision is essential
to train the learnable refinement module. Strong 2D (image
plane) and 3D (radar space) supervision yields better perfor-
mance.

Number of BBoxes in Training: We evaluate the impact
of Ntrain, the number of BBoxes for REXO and the number
of queries for RETR, on the three AP metrics in Table 5b.
It is seen that AP tends to decrease as Ntrain increases for
both methods, but this may be due to the number of BBoxes
being too large relative to the number of subjects, since the
maximum number of subjects in the MMVR dataset is three
per frame.

Dynamic Number of BBoxes in Inference: Table 5c
evaluates the impact of varying the number of BBoxes dur-
ing inference. While RETR exhibits a sharp performance de-
cline when the number of queries exceeds 10, REXO experi-
ences a much smaller decrease. This robustness in handling
varying numbers of BBoxes during inference is a direct ad-
vantage inherited from DiffusionDet.

Number of Iteration Steps: Table 5d presents REXO’s
performance as the number of iteration steps increases. In-
creasing the steps from 1 to 10 yields improvements of
+0.78 in AP, showing consistent gains with more iterations.
We also report runtime and FPS on a single NVIDIA RTX
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Figure 7: Visualization of unseen frames in P2S2 of MMVR: The left column shows the radar heatmaps, followed by the second
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the middle column for two baselines (RFMask and RETR) and REXO, with purple segmentation masks overlaid to illustrate
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Figure 8: Vertical radar heatmaps when a single subject (left)
and two subjects (right) are at the same depth.

6000: 60 ms (17 FPS) for 1 step, 255 ms (4 FPS) for 5 steps,
and 483 ms (2 FPS) for 10 steps. While more steps improve
accuracy, they incur higher latency. Thus, using 5 steps of-
fers a practical trade-off between detection performance and
runtime efficiency for indoor human sensing.

Additional comparison with DiffusionDet and REXO:
Table 5e confirms that our REXO (both views) outperforms
the original DiffusionDet with radar heatmaps, which de-
notes our REXO is more appropriate for our radar settings.
It also suggests the horizontal view (i.e., bird’s-eye view) is
more critical than the vertical view for detection since the
vertical view cannot separate the azimuth position.

5.4 Challenging Cases
To better understand challenging configurations, we provide
additional analysis for two scenarios: 1) when two subjects
are at a similar depth; and 2) generalization over unseen en-
vironments. For 1), Fig. 8 compares vertical heatmaps when
a single subject (left) and two subjects (right) present at
nearly the same depth but at different heights. When mul-
tiple subjects are at the same depth, the reflections from dif-
ferent subjects overlap and form more complex patterns than
that for a single subject, potentially leading to failed cross-
view feature association and radar-conditioned denoising
steps. As confirmed in Table 4, AP drops significantly when
the depth difference D is less than 20 cm based on the
evaluation over P2S2 of MMVR. For 2), we divide the
test radar frames in P2S2 of MMVR into “Seen” and “Un-
seen” frames, and analyze their APs using IoU histograms in
Fig. 6. For the “Seen” frames, REXO exhibits a histogram
similar to one observed in P1S2. In contrast, for the “Un-
seen” frames, REXO clearly dominates the IoU range of
[0.75, 1], while RETR shows a heavier concentration around
an IoU of 0.5.

Fig. 7 further visualizes selected “Unseen” frames from a
room never encountered during training in P2S2. It is seen
that 2D BBox predictions by REXO align more closely with
human segmentation masks (purple pixels) than those of
RETR and RFMask. This improvement is potentially due to
the explicit cross-view feature association, which strength-
ens consistency across radar views even in new environ-



ments, yielding better generalization. More visualization ex-
amples are provided in Appendix G.

6 Conclusion
For indoor radar perception, we proposed REXO, a novel
multi-view radar object detection method that refines 3D
BBoxes through a diffusion process. By explicitly guid-
ing cross-view radar feature association and incorporating
ground-level constraint, REXO achieves consistent perfor-
mance improvements on two open indoor radar datasets over
a list of strong baselines.
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A Details on Diffusion Models
Denoising Diffusion Probabilistic Models (DDPM) (Ho,
Jain, and Abbeel 2020) and Denoising Diffusion Implicit
Models (DDIM) (Song, Meng, and Ermon 2021) are latent
variable models designed to approximate the data distribu-
tion q(x0) using a generative model distribution pθ(x0). The
generative model structure is expressed as:

pθ(x0) =

∫
pθ(x0:T )dx1:T , (16)

pθ(x0:T ) = pθ(xT )

T∏
t=1

p
(t)
θ (xt−1|xt), (17)

where x1:T are latent variables defined in the same space
as x0. The generative process reverses the forward diffusion
process, transforming noise xT into x0 over T steps. Both
models share a training objective based on maximizing the
variational lower bound (ELBO):

max
θ

Eq(x0)[log pθ(x0)]

≤ max
θ

Eq(x0:T )[log pθ(x0:T )− log q(x1:T |x0)]. (18)

In both cases, the forward process q(x1:T |x0) has no learn-
able parameter, simplifying training to focus on the genera-
tive process.

DDPM (Ho, Jain, and Abbeel 2020): The forward pro-
cess progressively adds Gaussian noise to x0 through a
Markov chain:

q(xt|xt−1) = N
(√

αt

αt−1
xt−1,

(
1− αt

αt−1

)
I

)
, (19)

where αt is a decreasing sequence. This transforms x0 into
nearly pure Gaussian noise xT , leading to a direct sampling
of the xt from x0:

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
, (20)

where ᾱt :=
∏t

s=0 αs =
∏t

s=0 (1− βs) with βs denoting
the noise variance schedule. The reverse process approxi-
mates this process backward:

p
(t)
θ (xt−1|xt) = N

(
µ
(t)
θ (xt), σ

2
t I
)
, (21)

where µ
(t)
θ (xt) = 1√

αt

(
xt − βt√

1−ᾱt
ϵ
(t)
θ (xt)

)
is a learn-

able function and ϵ
(t)
θ is designed with a neural network

model with learnable parameter θ. The sampling can be done
following (2). The loss function is designed to minimize the
discrepancy in predicting noise:

Lγ(ϵθ) =

T∑
t=1

γtEx0,ϵ

[
∥ϵ(t)θ (xt)− ϵ∥22

]
, (22)

where ϵ ∼ N (0, I) is Gaussian noise, and γt are weights.

DDIM (Song, Meng, and Ermon 2021): DDIM gener-
alizes the forward process to a non-Markovian framework
which can be derived from Bayes’ rule:

q (xt | xt−1,x0) =
q (xt−1 | xt,x0) q (xt | x0)

q (xt−1 | x0)
, (23)

where q (xt | x0) and q (xt−1 | x0) are defined with (20)
and

q(xt−1|xt,x0)

= N
(
√
αt−1x0 +

√
1− αt−1 − σ2

t ϵ
(t), σ2

t I

)
, (24)

with

ϵ(t) =
xt −

√
αtx0√

1− αt
. (25)

Different from DDPM, this process maintains a direct de-
pendence on the original data x0 at each step. The reverse
process in DDIM reconstructs x0 as

xt−1 =
√
αt−1x̂0 +

√
1− αt−1 − σ2

t · ϵt + σtϵt, (26)

ϵ(t) =
xt −

√
αtx̂0√

1− αt
, (27)

where ϵ(t) is the estimated noise from x0 to xt. The loss
function remains identical to that in DDPM which uses the
neural network ϵ

(t)
θ (xt), ensuring the compatibility in train-

ing.
DDIM enables a faster sampling by reducing the num-

ber of steps T in the sampling process. A subset of latent
variables {xτ1 , . . . ,xτS} is defined where τ is an increas-
ing sub-sequence of [1, · · · , T ] of length S, and sampling
occurs over this shortened trajectory:

xτi−1
=

√
ατi−1

x̂0 +
√
1− ατi−1

− σ2
τi · ϵ

(τi) + στiϵτi ,

ϵ(τi) =
xτi −

√
ατi x̂0√

1− ατi

. (28)

For instance, when S ≪ T , computational efficiency is
significantly improved. This method allows a pre-trained
DDPM model to be reused while achieving 10× to 50×
faster sampling. This acceleration is particularly beneficial
for scenarios requiring low-latency processing such as per-
ception tasks.

For REXO training in Fig. 4 and inference, we construct
a DenoisingDetθ that directly predicts x0, similar to the
above DDIM and DiffusionDet (Chen et al. 2023b). This di-
rect estimation of x0 allows us to compute the set-prediction
loss in DETR (Carion et al. 2020) over both radar and cam-
era coordinate systems. As a result, the noise prediction net-
work ϵ(τi) is a function of the predicted x̂0.

B Details of Cross-View Radar-Conditioned
Denoising Detector

Fig. 9 illustrates the overall architecture of the proposed
cross-view radar-conditioned denoising detector

x̂0 = DenoisingDetθ (xt, t,Zhor,Zver) , (29)
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Figure 9: Overall architecture of the cross-view radar-
conditioned denoising detector DenoisingDetθ.

which takes as input the noisy 3D BBox set xt, the
time index t, and the two radar view backbone features
{Zhor,Zver}. The output is a direct estimation of x0.
Specifically, DenoisingDetθ comprises two key modules:
• 1. Cross-view feature association;
• 2. BBox detector BBoxDetθ.

The cross-view feature association module was explained
in (4)-(6), which involves the 3D-to-2D BBox projection
of (4), feature cropping via the RoIAlign operation of (5),
and the feature aggregation of (6), yielding Zcrop

radar =
{Zcrop

hor ,Zcrop
ver } ∈ RC×r×2r in Fig. 9 (blue hatch).

The BBox detector module, BBoxDetθ, first incorporates
a time-dependent predictor, Predictor, designed to extract
time-dependent features f from the aligned cross-view radar
features Zcrop

radar and the time-embedding of t (Ho, Jain, and
Abbeel 2020),

f = Predictor (et,Z
crop
radar) , (30)

where et = Embedding (t) is a time-embedding of time t.
In the Predictor, self-attention is applied to the cross-view
radar features Zcrop

radar to reason about the relations between
objects. Then, the features are enhanced by applying the dy-
namic convolution to each 3D RoI feature. Finally, they are
fed into the diffusion process by time-embedding to obtain
the feature f .

Using the time-dependent feature f , the BBox and Class
heads are used to predict the BBoxes x̂0 and the class labels.

In the BBox head, the offset ∆x is first computed as

∆x = {∆x,∆y,∆z,∆w,∆h,∆d}⊤ ∈ R6

= FFN3Doffset (f) , (31)

where FFN3Doffset : RD → R6 represents a feed-forward net-
work (FFN) to estimate the 3D BBox offsets and each ∆∗
denotes the offset for the corresponding BBox parameter
(x, y, z, w, h, d). To ensure numerical stability, the values of
∆w, ∆h and ∆d are clipped to a maximum of log

(
105/16

)
.

The BBox estimate x̂0 is then computed using a linear up-
date for the BBox center position and an exponential scaling
over the axis length offsets

{
e∆w, e∆h, e∆d

}
:

x̂0=
{
cx+w∆x, cy+h∆y, cz+d∆z, e∆ww, e∆hh, e∆dd

}⊤
.

(32)
In the class head, the class scores can be predicted as p̂.

The classification loss evaluates the alignment between the
predicted objects and GT classes, serving as a crucial com-
ponent in object detection tasks. The classification loss is
defined as:

Lclass = −
Ntrain∑
i=1

log p̂σ̂(i) (ci), (33)

where ci is the GT class label, p̂σ̂(i)(ci) denotes the pre-
dicted probability for class ci, and σ̂(i) represents the opti-
mal matching computed by the Hungarian algorithm. It is
a permutation that defines the one-to-one correspondence
between the GT object set and the predicted set. Addition-
ally, when the GT class is ∅ (no object), the loss term is
down-weighted to address class imbalance. This design im-
proves the model’s performance in predicting positive exam-
ples (objects present in the image).

C Details of 3D-to-2D Projection and
Necessity of the Refinement Module

We present the detailed explanations for 3D-to-2D projec-
tion and necessity of the refinement module. Given a 3D
BBox which consists of its eight vertices

{xi
camera ∈ R3 | i = 1, . . . , 8}, (34)

where each xi
camera is expressed in the 3D camera coordinate

system, our goal is to compute the corresponding 2D BBox
binit ∈ R4, defined by its center coordinates (xc, yc) and
its width w and height h. To achieve this, we define a pro-
jection function with a pinhole camera model as a concrete
expression of (10):

projpinhole : R
3 → R2 : (X,Y, Z) 7→ (px, py) . (35)

In this model, the projection of the point x∗
camera =

(X,Y, Z) onto the image plane is given by

px =
fxX

Z
+ cx, py =

fyY

Z
+ cy, (36)

where fx and fy are the focal lengths along the x and y
axes (in pixels), and (cx, cy) represents the coordinates of
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GT.

the principal point in the image. In homogeneous coordi-
nates, this mapping can be expressed as

λ

(
px
py
1

)
=

(
fx 0 cx
0 fy cy
0 0 1

)(
X
Y
Z

)
, (37)

with the scaling factor λ = Z. Thus, for each vertex, the
projection onto the image plane is given by:

pi = projpinhole(x
i
camera), for i = 1, . . . , 8, (38)

where pi = (pix, p
i
y) represents the 2D coordinates of the

projected point in the image plane. Once the eight vertices
have been projected, the extreme coordinates on the image
plane are determined as:

umin = min
i
{pix}, umax = max

i
{pix}, (39)

vmin = min
i
{piy}, vmax = max

i
{piy}. (40)

Using these extremes, the center coordinates, width, and
height of the 2D BBox are computed by:

xc =
umin + umax

2
, yc =

vmin + vmax

2
, (41)

w = umax − umin, h = vmax − vmin. (42)
Thus, the final 2D BBox can be obtained as:

binit = (xc, yc, w, h) . (43)

The 2D BBoxes obtained by projection, as shown by the
purple box binit in Fig. 10, are often too large. This occurs
because projecting the eight vertices xi

camera captures the
depth information from the camera, which causes both the
near and far parts of the object to be displayed in a 3D man-
ner. As a result, to accurately predict the 2D BBox bimage
on the image plane, we must use a refinement module. This
module reduces the size of the initial BBox, as illustrated by
the blue boxes in Fig. 10.
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Figure 11: IoU histogram when no image plane supervision.
Almost all IoU values are lower than 0.5, resulting in 0 AP.
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Figure 12: 3D Proposals with RFMask3D.

To better understand the need for refinement, we calcu-
lated the Intersection over Union (IoU) between the ground-
truth (GT) 3D BBoxes (projected from the 3D space) and the
GT 2D BBoxes (defined on the image plane). The histogram
of IoU values in Fig. 11 shows a roughly Gaussian distri-
bution with a peak around 0.15, and nearly all IoU values
are below 0.5. In fact, in Fig. 10, the IoU is 0.17. This indi-
cates that if we do not apply refinement, even when the 3D
BBoxes are correctly predicted in the radar coordinate sys-
tem, the average precision (AP) on the image plane would be
zero. Therefore, our REXO method uses a refinement mod-
ule.

D RFMask3D as a Baseline

As one of the baselines in our evaluation experiments, we
constructed RFMask3D by extending RFMask (Wu et al.
2023) to 3D. RFMask uses a region proposal network
(RPN) to extract regions of interest (RoIs) from a horizontal
heatmap based on 2D anchor boxes and predicts 3D BBoxes
in the 3D radar coordinate system by combining them with
fixed heights. By designing an RPN that uses 3D anchor
boxes, we explicitly extract 3D RoIs from both horizontal
and vertical heatmaps, as shown in Fig. 12, enabling the es-
timation of 3D BBoxes. Unlike RFMask, this method allows
for the learning of height as well.



Table 6: Details of hyper-parameters. Fixed height for the HIBER dataset depends on the environment.

Name Notation Value
P1S1 P1S2 P2S1 P2S2

D
at

a

# of training - 86579 70266 190441 118280
# of validation - 10538 24398 23899 33841
# of test - 10785 13238 23458 85677
Input radar heatmap size H ×W 256×128 256×128 256×128 256×128
Segmentation mask size H ×W 240×320 240×320 240×320 240×320
Resolution of range cm 11.5 11.5 11.5 11.5
Resolution of azimuth deg. 1.3 1.3 1.3 1.3
Resolution of elevation deg. 1.3 1.3 1.3 1.3
Scale - log log log log

M
od

el

Backbone - ResNet18 ResNet18 ResNet18 ResNet18
# of input consecutive radar frames - 4 4 4 4
Extracted feature map size H/s×W/s 64×32 64×32 64×32 64×32
Threshold for detection - 0.5 0.5 0.5 0.5
Loss weight for GIoU on radar coordinate system λGIoU 2.0 2.0 2.0 2.0
Loss weight for GIoU on image plane λGIoU 2.0 2.0 2.0 2.0
Loss weight for L1 on radar coordinate system λL1 5.0 5.0 5.0 5.0
Loss weight for L1 on image plane λL1 5.0 5.0 5.0 5.0
Loss weight for radar λ3D 1.0 1.0 1.0 1.0
Loss weight for image λ2D 1.0 1.0 1.0 1.0

Tr
ai

ni
ng

Batch size - 32 32 32 32
Epoch for detection - 100 100 100 100
Patience for early stopping - 5 5 5 5
Check val every n epoch for early stopping - 2 2 2 2
Optimizer - AdamW AdamW AdamW AdamW
Learning rate - 1e-4 1e-4 1e-4 1e-4
Sheduler - Cosine Cosine Cosine Cosine
Maximum number of epochs for sheduler - 100 100 100 100
Weight decay - 1e-3 1e-3 1e-3 1e-3
# of workers - 8 8 8 8
GPU (NVIDIA) - A40 A40 A40 A40
# of GPUs - 1 1 1 1
Approximate training time day 1 1 2 2

Table 7: Full Result of Table 1 under P1S1 on MMVR
dataset.

Method AP AP50 AP75 AR1 AR10

RFMask 25.53 67.30 15.86 38.90 38.91
RFMask3D 34.84 69.57 31.74 44.88 44.88
DETR 35.64 77.59 28.00 - -
RETR 39.62 80.55 33.84 51.90 53.42

REXO 39.23 73.46 37.83 48.58 48.58

E Hyperparameters for Performance
Evaluation

The hyper-parameters used in our experiments of Section 5
are shown in Table 6. The table is divided into three parts,
Data, Model, and Training, each with parameter names, no-
tations, and values for each dataset.

Table 8: Full Result of Table 1 under P1S2 on MMVR
dataset.

Method AP AP50 AP75 AR1 AR10

RFMask 24.46 66.82 11.22 34.07 34.53
RFMask3D 30.75 76.48 16.23 40.28 40.29
DETR 28.51 75.90 13.42 - -
RETR 30.16 78.95 15.17 42.93 42.93

REXO 36.48 87.02 20.51 47.70 47.71

F Definition of Metrics

Mean Intersection over Union: We adopt average pre-
cision on intersection over union (IoU) (Everingham et al.
2010) as an evaluation metric. IoU is the ratio of the overlap
to the union of a predicted BBox A and annotated BBox B
as:

IoU (A,B) =
|A
⋂

B|
|A
⋃

B|
. (44)



Table 9: Full Result of Table 1 under P2S1 on MMVR
dataset.

Method AP AP50 AP75 AR1 AR10

RFMask 31.37 61.50 27.48 33.07 38.21
RFMask3D 39.89 80.38 35.35 36.81 48.54
DETR 29.53 63.08 25.35 - -
RETR 46.75 83.80 46.06 42.19 57.39

REXO 48.35 85.89 48.38 43.52 57.88

Table 10: Full Result of Table 1 under P2S2 on MMVR
dataset.

Method AP AP50 AP75 AR1 AR10

RFMask 6.03 22.77 0.88 9.25 12.09
RFMask3D 12.26 37.01 4.34 18.91 19.52
DETR 9.29 34.69 2.49 20.68 22.82
RETR 12.45 41.30 4.96 19.96 21.58

REXO 23.47 64.41 10.44 30.65 33.44

Average Precision: Average Precision (AP) can then be
defined as the area under the interpolated precision-recall
curve, which can be calculated using the following formula:

AP =

n−1∑
i=1

(ri+1 − ri) pinterp (ri+1) , (45)

pinterp (r) = max
r′≥r

p (r′) , (46)

where the interpolated precision pinterp at a certain recall
level r is defined as the highest precision found for any recall
level r′ ≥ r. We present three variants of average precision:
AP50, AP75, and AP, where the former two represent the loose
and strict constraints of IoU, while AP is the averaged score
over 10 different IoU thresholds in [0.5, 0.95] with a step
size of 0.05.

Average Recall: Average recall (AR) (Hosang et al. 2016)
between 0.5 and 1 of IoU overlap threshold can be com-
puted by averaging over the overlaps of each annotation
gti with the closest matched proposal, that is integrating
over the y : recall axis of the plot instead of the x :
IoU overlap threshold axis. Let o be the IoU overlap and
recall (o) the function. Let IoU (gti) denote the IoU be-
tween the annotation gti and the closest detection proposal:

AR = 2

∫ 1

0.5

recall(o)do (47)

=
2

n

n∑
i=1

max (IoU (gti)− 0.5, 0) . (48)

The following are some variations of AR:

• AR1: AR given one detection per frame;
• AR10: AR given 10 detection per frame;
• AR100: AR given 100 detection per frame.

Table 11: Full Result of Table 2 under WALK on HIBER
dataset.

Method AP AP50 AP75 AR1 AR10

RFMask 17.77 52.46 6.78 32.71 32.71
RFMask3D 16.58 48.10 6.53 29.89 29.89
DETR 14.45 47.33 4.25 28.64 28.64
RETR 22.09 59.83 10.99 35.16 35.16

REXO 25.33 62.55 15.83 20.03 37.54
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Figure 13: Result of Table 5a: The effect of 2D image super-
vision with loss weight λ2D while keeping λ3D = 1.0.

G Ablation Study
Complete Results: Tables 7, 8, 9 and 10 show the com-
plete results of Table 1, including AR. We added the met-
ric regarding average recall explained in Appendix F. The
results show that the same trends as in Table 1 also apply
to AR. In particular, the generalization performance of Split
P2S2 has improved significantly.

2D Image Supervision: Fig. 13 shows the AP results of
Table 5a, which compares the various weight parameter λ2D
while keeping λ3D = 1.0 in (15). Each point denotes the
mean of three trials, and the hatching denotes the standard
deviation. The table shows that it is possible to achieve high
performance by using both the loss of the 3D BBox in the
radar coordinate system and the loss of the 2D BBox on the
image plane. Also, the figure shows that values of λ2D ≤ 0.5
exhibit a larger standard deviation. In other words, there is
a general upward trend, reflecting the trade-off between 2D
and 3D losses.

Number of BBoxes in Training: Table 12 shows the com-
plete results of Table 5b. From the table, we can see that
AP50 drops significantly for RETR as the number of queries
increases, but REXO maintains a high level of accuracy. On
the other hand, there is no significant fluctuation in AR, and
RETR and REXO have similar trends. However, REXO has
a significantly higher performance.

Dynamic Number of BBoxes in Inference: Fig. 14
shows the AP50 results of Table 5c. The red line shows
the results of REXO, and the blue line shows the results of



Table 12: Full Result of Table 5b: The number of BBoxes in
Training.

Method Ntrain AP AP50 AP75 AR1 AR10

RETR 10 12.45 41.30 4.96 19.96 21.58
RETR 20 9.85 31.01 4.48 17.90 18.72
RETR 50 8.49 29.76 2.53 17.12 18.91

REXO 10 23.47 64.41 10.44 30.65 33.44
REXO 20 20.94 65.03 5.90 27.45 29.63
REXO 50 19.67 61.44 5.63 26.30 28.45
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Figure 14: Full Result of Table 5c: Dynamic number of
BBoxes in inference.

RETR. When the number of BBoxes used in the inference
is increased, we can see that RETR performs much worse,
while REXO maintains roughly the same performance for
all BBoxes. This is because RETR uses queries that require
training, and, combined with the results in Table 12, a sig-
nificant deviation from the number of objects in the data will
lead to a decrease in performance. On the other hand, REXO
always uses random initial BBoxes, so it does not require
training and can handle a more flexible number of BBoxes
regardless of the number of objects.

Number of Iteration Steps: Fig. 15 shows the AP50 re-
sults of Table 5d. The number of steps corresponds to S, as
explained in Appendix A. From the figure, we can see that
REXO’s performance improves as the number of steps S in-
creases.

Impact of Denoising One Parameter: Table 13 evaluated
two variants: denoising only cz (center depth) or d (depth
extent) for 10 steps, while fixing the other parameters after
1 step. Both variants maintain strong performance, though
jointly denoising all parameters (10 steps) yields the best
result.

Ground-Level Constraint: The effectiveness of prior-
constrained 3D BBox diffusion is evaluated in terms of con-
vergence during training. The training curve is shown in
Fig. 16. The horizontal axis represents the number of train-
ing steps and the vertical axis represents AP. From this fig-
ure, it can be seen that convergence is faster when prior-
constrained 3D BBox diffusion is applied than when it is not.
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Figure 15: Full Result of Table 5d: # of denoising steps S.
More steps slightly improve the detection.

Table 13: Effect of denoising only one parameter.

Denoised Param. # of steps AP AP50 AP75

cz 10 23.39 65.71 10.13
d 10 23.42 65.86 10.12

All 10 24.27 66.57 11.18
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Figure 16: REXO can contribute to fast convergence by us-
ing a ground-level constraint for 3D BBox Diffusion.

Performance also remained high on the validation set when
prior-constrained 3D BBox diffusion was applied, suggest-
ing that it improves both fast convergence and generalization
performance.

Analysis of Failure Cases: We provide failure cases in
Fig. 17. These are all results of “Unseen,” which means the
environment that is not included in the training data (d8).
As with d8s1 and d8s3, REXO may sometimes predict in-
accurate positions, although less frequently than RETR and
RFMask. In addition, there are cases where false negatives
occur, such as with d8s2, d8s4, d8s5, and d8s6. In particu-
lar, it is thought to be difficult to capture the characteristics
of individuals that are far away from the radar, such as with
d8s2, because the resolution becomes coarse. In addition,
REXO frequently gets false positives such as d8s2 - d8s6,
so adjusting the threshold is important.
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Figure 17: Visualization of failure cases. Each row indicates the segment name used from the P2S2 test dataset.
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