MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Knowledge-Intensive Software Engineering
Tools

Charles Rich, Richard C. Waters

TR91-03 September 1991

Abstract

Essentially all current software engineering tools share a common technological approach: They
use a shallow representation of software objects and manipulate this representation using proce-
dural methods. This approach has the benefit that it allows one to get off to a fast start and quickly
provide a tool that delivers benefits. In addition, software engineering tools can undoubtedly be
extended to a considerable extent within this approach. However, the approach will eventually
reach a point of diminishing returns where more knowledge-intensive approaches will be needed
to achieve significantly higher levels of capability. We believe that the software engineering
tools of the future will have to rely on deep representation, inspection methods, and intelligent
assistance. Deep representation will be necessary to capture a sufficiently large part of knowl-
edge about programming in general and particular programs. Inspection methods (recognizing
standard solutions rather than reinventing them) will be necessary to deal with complexity. In-
telligent assistance will be necessary, because complete automation is not a realistic possibility
in the foreseeable future, rather only parts of the programming process can be automated.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright(© Mitsubishi Electric Research Laboratories, Inc., 1991
201 Broadway, Cambridge, Massachusetts 02139

Mitsubishi Electric Research Laboratories

Technical Report 91-03 September 30, 1991

Knowledge-Intensive Software Engineering Tools

by

Charles Rich
Richard C. Waters

Abstract

Essentially all current software engineering tools share a common technological ap-
proach: They use a shallow representation of software objects and manipulate this rep-
resentation using procedural methods. This approach has the benefit that it allows one
to get off to a fast start and quickly provide a tool that delivers benefits. In addition,
software engineering tools can undoubtedly be extended to a considerable extent within
this approach. However, the approach will eventually reach a point of diminishing re-
turns where more knowledge-intensive approaches will be needed to achieve significantly
higher levels of capability.

We believe that the software engineering tools of the future will have to rely on deep
representation, inspection methods, and intelligent assistance. Deep representation will
be necessary to capture a sufficiently large part of knowledge about programming in
general and particular programs. Inspection methods (recognizing standard solutions
rather than reinventing them) will be necessary to deal with complexity. Intelligent
assistance will be necessary, because complete automation is not a realistic possibility in
the foreseeable future, rather only parts of the programming process can be automated.

Submitted to IEEE Transactions on Knowledge and Data Engineering, September 1991.

201 Broadway
Cambridge Massachusetts 02139

Publication History:-
1. First printing, TR 91-03, September 1991

Copyright (©) Mitsubishi Electric Research Laboratories, 1991
201 Broadway; Cambridge Massachusetts 02139

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of Mitsubishi Electric Research Laboratories of Cambridge, Massachusetts; an
acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing
for any other purpose shall require a license with payment of fee to Mitsubishi
Electric Research Laboratories. All rights reserved.

Knowledge-Intensive Tools 1

The idea of computer-aided software engineering—applying the power of computers
to the software process itselt—has been around since the first programmers realized that
programming is hard. Rapid early progress came from the introduction of assemblers and
then high-level language compilers in the 1950s and early 60s. Each move to a higher
level language resulted in a dramatic decrease in the program size needed for a given
problem. This in turn yielded dramatic improvements in productivity by simplifying
every aspect of the software process.

Stepping up again to a very high-level language has been a goal of computer science
since the late 1960s. Unfortunately, there has been little success thus far in automatically
compiling such languages into efficient machine code. Overall, although there have been
a number of important advances in general-purpose programming languages over the
past 20 years, none has had as dramatic an effect as the initial introduction of high-level
languages.

With diminishing returns from work on general-purpose programming languages, two
less general approaches to automation came to the fore in the 1970s and early 80s:
domain-specific and software-task-specific support. Given a sufficiently narrow applica-
tion domain, such as report generation or employee payroll, it has proven quite feasible to
develop a specialized very high-level language (often called a fourth-generation language)
and a program generator that compiles it into efficient machine code. It has also proven
feasible to develop software engineering tools that (partially) automate specific software
tasks, such as program testing or constructing a consistent version of a system.

More recently, a new movement has developed under the rubric of Computer-Aided
Software Engineering (CASE). In addition to increasing the power of individual software
engineering tools, this approach emphasizes the enterprise-wide integration of software
support based on a central on-line repository for software objects, including requirements,
designs, and source code. A general-purpose and comprehensive software engineering
environment supporting the integrated evolution of all software objects would be an
advance as dramatic and pervasive as the move to higher level languages.

Our view of the current status of software engineering tools is indicated by the lower
curve in Figure 1. Rapid progress is being made. However, the day is approaching
when the power of software tools will be limited by the technology now employed. Some
tools, such as program editors, are close to these limits already. Other tools, such as
repositories, still have room for large improvement using current technology. (For a
sampling of current developments in software tools, see [2, 3].)

After a brief review of the technology underlying current software engineering tools,
we discuss the technologies that we feel are essential to support knowledge-intensive tools
that are fundamentally more power than today’s shallow tools (see the upper curve in
Figure 1). The main body of the paper is devoted to a description of an experimental
knowledge-intensive tool based on these technologies.

Limits of Current Technology

Essentially all current software engineering tools share a common technological ap-
proach: They use a shallow representation of software objects and manipulate this rep-
resentation using procedural methods.

2 Rich & Waters

Benefit
A
- - -
”~
-

7 Deep Representation
Inspection Methods
Intelligent Assistance

- Shallow Representation
Procedural Methods

» Cost

Figure 1: A comparison of current software engineering tool technology (lower curve)
with the technology required for knowledge-intensive tools (upper curve).

Shallow representation. For a software engineering tool to operate on a given
software object, it must represent the object on line in some fashion. The choice of
representation involves a trade-off between the power of the representation and the cost
of implementing it. Generally speaking, the shallower a representation, i.e., the less
information it represents explicitly, the easier it is to implement. However, the less
explicitly information is represented, the harder it is for a tool to manipulate it. For
instance, it is next to impossible for a tool that represents requirements merely as textual
documents to detect logical inconsistencies in them.

Many current software tools operate at the level of text, parse trees, or diagrams
annotated with text. These relatively shallow representations leave much information
either implicit or totally absent. For instance, representing a program as a parse tree
makes its syntactic structure explicit, but leaves implicit the data- and control-flow struc-
ture of the underlying algorithm. As a result, the typical syntax-directed program editor
provides good support for syntactic changes. Single commands suffice to add or delete
syntactic units and the syntactic correctness of the result can be checked. However, even
a conceptually simple algorithmic change typically requires a sequence of disconnected
syntactic edits. Also, the editor has no basis for checking the algorithmic correctness of
the result.

Some tools for systems analysis use a deeper level of representation. Rather than
merely manipulating diagrams, they represent the underlying information using data-
dictionary and entity-relationship technology. This allows more powerful editors to be
developed and a deeper level of consistency checking.

In general, it makes sense to represent only as much information as a given tool can
take advantage of. However, current tools will eventually reach the limits of what they
can do with the representations they use.

Procedural methods. For a software engineering tool to support a given task, it

Knowledge-Intensive Tools 3

must have knowledge about the task. In current tools, this knowledge is almost exclu-
sively procedural. Without making use of any explicit representation of task knowledge,
the tool is simply written so that it performs the task.

Procedural methods have the advantage of enabling you to get off to a quick start. It
is typically easy to support the first round of capabilities. However, as more and more
features are added, procedural systems become progressively more difficult to modify. For
example, it is relatively easy to write a program generator for a simple fourth-generation
language. However, as the language is expanded, the program generator rapidly balloons
into an unmaintainable monster.

Supporting Knowledge-Intensive Tools

If software engineering tools are to become dramatically more powerful than the tools
available today, they must become knowledge-intensive. In contrast to current tools,
which attempt to leverage off of small amounts of knowledge about software artifacts and
software tasks, they must contain large amounts of knowledge about software artifacts
and software tasks. In our opinion, this requires the introduction of three key concepts:
deep representation, inspection methods, and intelligent assistance.

Deep representation. A software tool cannot reason about information that it
does not represent. If a tool is to provide comprehensive support for a complex software
task that requires deep understanding of a software artifact, then it must represent the
artifact in such a way that all of the relevant information is available to it.

A tool that wishes to support complex algorithmic changes in a program has to have
detailed algorithmic information available to it. For instance, in our work we use a
representation called the Plan Calculus [6] to represent programs and their designs. As
compared to program text or parse trees, the Plan Calculus makes data flow, control
flow, and the design of a program more explicit. This facilitates the direct manipulation
of these features.

To represent nonalgorithmic aspects of software, such as performance requirements,
one can use standard artificial-intelligence knowledge-representation and reasoning tech-
niques. For example, the Requirements Apprentice, described in the next section, uses
frames and constraints to detect inconsistency and incompleteness in informal require-
ments descriptions.

An important benefit of deeper representations is that they allow a deeper level of in-
tegration between tools. A shared semantic framework enables the incremental exchange
of information between tasks necessary to support a more evolutionary software process.

Inspection methods. Software engineers, like engineers in other disciplines, seldom
reason from first principles. Rather, they rely whenever possible on their experience
with standard building blocks (or clichés). Given knowledge of the clichés in a particular
application area, it is possible to perform many software engineering tasks by inspection.
For example, in analysis by inspection, properties of a program are deduced by recognizing
occurrences of clichés and referring to their known properties. Similarly, in design by
inspection, recognition of key properties of the specification leads to the construction of
a design by combining standard design components.

4 Rich & Waters

Automated tools are undoubtedly better suited to the tedious task of reasoning from
first principles than human software engineers. However, as the size of a problem rises, the
complexity of reasoning about it from first principles explodes exponentially. Therefore,
if software tools are to automate significant parts of complex software tasks, they too
will have to rely on inspection methods.

An important collateral advantage of inspection methods is that clichés lend them-
selves to declarative (nonprocedural) representation. This has two effects. First, the
same library of clichés can be used in support of more than one task, e.g., design and
analysis. Second, declarative knowledge is easier to extend. Formalizing suites of clichés
and integrating them into an existing library is not trivial. However, it is much easier
than modifying a collection of complex interacting procedures.

Intelligent assistance. Even with deep representation and inspection methods,
it will not be possible (at least in the foreseeable future) to totally replace software
engineers. However, the next generation of tools can aim for intelligent assistance.

Rather than simply accepting and executing commands, an intelligent assistant can
check the reasonableness of decisions, fill in missing details, and request advice about how
to carry out complex operations. These abilities can contribute to both an engineer’s
productivity and the reliability of the final software product.

Another hallmark of an intelligent assistant is the ability to explain its actions and
decisions in terms that an engineer can understand. This allows engineers to check what
the tool has done. It also allows the tool to describe the problems it has encountered
when it asks for advice.

Using inspection methods makes it easier for the engineer to understand what the
tool is doing and for the tool to understand advice given by the engineer. The names of
clichés provide the essential vocabulary for communication between the engineer and the
assistant, just as they form the essential vocabulary for communication between human
engineers.

The Requirements Apprentice

A central goal of our work has been to develop technologies for knowledge-intensive
computerized support of software engineering. Our long term aim has been to create a
Programmer’s Apprenticethat can provide powerful support for all aspects of the software
process [6]. As steps toward the full apprentice, we have created a series of demonstration
systems that support particular software tasks. The latest of these demonstration systems
(the Requirements Apprentice) is a particularly good example of what a knowledge-
intensive software tool based on deep representation, inspection methods, and intelligent
assistance can do.

The focus of the Requirements Apprentice (RA) is on the formalization phase that
bridges the gap between an informal and formal specification. This is a crucial area of
weakness in the current state of the art.

Figure 2 shows the role of the RA in relation to other agents involved in the software
process. Note that the RA does not interact directly with an end-user, but rather is an
intelligent assistant to a requirements analyst.

Knowledge-Intensive Tools 5

Interactlve

Output

Requirements

Cliche ? Document

aoxm

Library

Requirements

ommands

End-User Analyst

Figure 2: The Requirements Apprentice.

The RA produces three kinds of output. Interactive output notifies the analyst of
conclusions drawn and inconsistencies detected while requirements information is being
entered. A machine-manipulable Requirements Knowledge-Base (RKB) is a representa-
tion of everything the RA knows about an evolving requirement. (In the long term, it is
intended that the RKB be accessed directly by other tools.) Finally, the RA can create a
more or less traditional requirements document summarizing the RKB.

Figure 2 shows that the RA is composed of three modules. Cake [5, 6] is a knowledge-
representation and reasoning system, which supports the reasoning abilities of the RA
(and the rest of the Programmer’s Apprentice). Cake provides basic facilities for propo-
sitional deduction (including the detection of contradictions), reasoning about equalities,
maintenance of dependencies between deduced facts, and incremental retraction of previ-
ously asserted facts. It also provides the basis for a deep representation of requirements
knowledge.

The executive handles interaction with the analyst and provides high-level control of
the reasoning performed by Cake. The analyst communicates with the executive by issu-
ing commands. Fach command provides fragmentary information about an aspect of the
requirement being specified. The immediate implications of a command are processed by
Cake, added to the RKB, and checked for consistency. If the analyst makes a change in
the description (to correct an inconsistency or simply due to a change of mind) the ex-
ecutive incrementally incorporates this modification into the RKB, retracting invalidated
deductions and replacing them with new deductions.

The cliché library is a declarative repository of information relevant to requirements
in general and to domains of particular interest. It forms the basis for applying inspection
methods to requirements. When creating a requirement, the information unique to the
particular problem comes from the analyst. However, the bulk of general information
about the domain comes from the cliché library. The structure of the library is illustrated
in Figure 3.

Much of our experimentation with the RA has revolved around the hypothetical
library-management-system requirement that has been used as an example in the In-
ternational Workshops on Software Specification and Design [10]. Three examples of
clichés in this area are repository, information system, and tracking system.

A repository is an entity in the physical world. The basic function of a repository is
to ensure that items entering the repository will be available for later removal. There
are several kinds of repositories depending on whether or not the items are intended to
be returned and whether or not the items are grouped into classes. Example repositories

6 Rich & Waters

Environment Needs
Repository Constraints Product-Functions
Collection
Add
Remove

Lending-Repository Grouped-Repository
Borrow Group-type
Return

Grouped-Lending-Repository

System
Information-System Tracking-System Display-System
Reports Target Data
Data-in Observations Display-Error
Query
Transactions Multi-Target-Display-System

Post-conditions
Tracking-Information-System

Tracking-operations
Records

Figure 3: The structure of a fragment of the requirements cliché library.

include a storage warehouse (simple repository for unrelated items), a grocery store (sim-
ple repository for items grouped in classes), and a rental car agency (lending repository
for items grouped in classes).

In contrast to the repository cliché, the information system cliché describes a class
of programs rather than a class of physical objects. The intent of the information sys-
tem cliché is to capture the commonality between programs such as personnel systems,
bibliographic databases, and inventory control systems. The central roles of an informa-
tion system are a set of reports that display parts of the data being stored and a set of
updating transactions that create/modify/delete the data.

A tracking system keeps track of the state of some target object. It does this by
making observations. The observations can either sense the state of the object directly
(e.g., the way a radar keeps track of the position of airplanes) or observe the operations
that change the state (e.g., the way a set of turnstiles keeps track of the number of
people in a building). The tracking information system cliché combines the features of
an information system and a tracking system.

The Requirements Apprentice in action. The transcript in Figure 4 shows the
RA being used to construct a requirement for the library management system example.
It is part of a larger transcript presented in [4].

The first three commands in Figure 4 begin the process of building a requirement by
introducing the key high level terms. The quotes around the word library in the RA’s
response to the third command indicate that the RA does not know what a library is.

To operate in the intended manner, the RA must have a considerable amount of
background knowledge relevant to the requirement at hand. However, it is unrealistic

Knowledge-Intensive Tools 7

1> (Find-Requirement Library-System)
Beginning-A-New-Requirement-Called-The Library-System.

2> (Define University-Library-Database :System :Synonym Uldb)

3> (Define University-Library :Environment :Library :Synonym Ul)
Ul Is-An-Instance-0f "Library".

4> (Need (!'Logic (Tracks Uldb Ul)))
Uldb Is-An-Instance-0f Tracking-System.

5> (Show-Pending-Issues)

1- Need-Definition of "Library".

2- Need-Further-Disambiguation of Tracks.
3- Need-Definition (Item-States Ul).

6> (Define Library :Ako Repository :Defaults (:Collection-Type Book))
Ul.Collection-Type Has-Value "Book".

7> (Define Book :Ako Physical-Object :Member-Roles (Title Author Isbn))
8> (Define Book.Isbn :Ako Integer :Cardinality Single :Unique-Id T)

9> (Define Unshelf :Roles (:Records Remove))

Uldb Is-An-Instance-0f Tracking-Information-System.
Uldb.Manner-0f-0Observation Is-An-Instance-0f Indirect-Observation.
Unshelf.0bject-Type Has-Value Book.

Unshelf .Records Has-Value Remove-Repository.

10> (Define Unshelf-Al1l :Roles
(:Records Remove
:0bjects (!The-Set-0f-A11l (?B) Such-That (= (Isbn 7B) $Input))))

Conflict #1 Colliding-Definitions-0f Unshelf And Unshelf-All

11> (Reformulate Book Copy-0f-Book)

<6>(Define Library :Ako Repository :Defaults (:Collection-Type Book))
=Reformulate=>7(Y or N) Yes.

<7> (Define Book :Ako Physical-Object :Member-Roles (Title Author Isbn))
=Reformulate=>7(Y or N) Yes.

<8> (Define Book.Isbn :Ako Integer :Cardinality Single :Unique-Id T)
=Reformulate=>7(Y or N) No.

12> (Define Books-By-Topic :Report :Roles
(:Data-In (!Decl ((?Topic Topic)))
:Data-0ut (!Decl ((?Titles (!Set-0f Title))))
:Query (!Logic (= ?7Titles (!The-Set-0f-All (7T Title) Such-That
(!There-Exists (7B Book) Such-That
(And (Mem ?B Ul)
(= 7T ?B.Title)
(= ?Topic ?B.Topic))))))))
Book Has-A :Property Called "Topic".

Figure 4: Interaction between an analyst and the Requirements Apprentice, excerpted
from a much longer transcript in [4], which illustrates the full capabilities of the Appren-
tice. Programmer input follows the > prompts.

8 Rich & Waters

1 Introduction

The environment of the library-system requirement is the University-Library (ur). The
UL is a library. A library is a repository for books.

The system being specified is the University-Library-Database (ULDB). The ULDB
is a tracking-information system, which tracks the state of the (ur). Three transactions
and one report are specified.

The library-system requirement is incomplete. There are five pending issues.

4.2 Reports of ULDB

The reports of an information-system generate information about the database without
altering it. Reports are principally described by an input data signature, an output
data signature, and a query that defines the functionality of the report.

4.2.1 Books-By-Borrower

The tracking-information-system-report books-by-borrower provides information about
what the state of the UL is believed to be.

Data-in: ?topic of type topic.

Data-out: ?titles of type set-of title.

Query: ?titles = {?t:title | 3 ?b:book (?b € uL A 7t = ?h.title A ?topic = ?b.topic)}.
Accessed-information: titles of books and topics of books.

Target: UL.

The purpose slot is empty.

Figure 5: Two excerpts from a requirements document generated at the end of Figure 4.

to assume that this knowledge will ever be complete. In consonance with this, the
RA’s current cliché library contains extensive knowledge of information systems, tracking
systems, and repositories but no knowledge about libraries or library information systems
per se.

The fourth command in Figure 4 states the key requirement that the ULDB system
tracks the library UL. As illustrated by the output generated by the fifth command,
much remains vague at this point. In particular, the term library needs to be defined,
and the term tracks is ambiguous because it is not yet clear which kind of tracking system
is intended. Since incompleteness and ambiguity are inevitable during the early stages
of constructing a requirement, the Apprentice refrains from complaining at this point.
Rather, it accepts information and performs inferences on a catch-as-catch-can basis.

After giving brief definitions of the terms library and book, the analyst uses the ninth
command to begin the process of defining the functional requirements. The processing
triggered by this command is an interesting example of the way the RA operates. The
command is ambiguous because, while the words records and remove are both mentioned
in the cliché library, neither one has a unique definition. This problem is resolved by
locating something that can record remove and is meaningful in the context of a tracking
system. In particular, the ULDB is further specialized to a tracking information system.

Knowledge-Intensive Tools 9

This allows unshelf to be understood as a tracking operation (see Figure 3). In addition,
since remove corresponds to one of the fundamental operations that alter the state of a
repository, it can be concluded that the ULDB operates by indirect-observation. All this
information is recorded in the RKB for future reference.

The first command to trigger a major response from the RA is the analyst’s attempt
to define an unshelf-all transaction that records the removal of every volume with a given
ISBN number. The RA complains that, as currently defined, unshelf is identical to unshelf-
all. The detection of this problem is supported by Cake based on equality reasoning and
simple deduction. (Since ISBN numbers are unique identifiers for books, there cannot be
more than one book with a given 1SBN.) The RA complains about this because it has a
built-in bias that new terms should not be synonymous with old terms unless explicitly
declared to be so.

On seeing this conflict, the analyst realizes that the commands to this point reflect a
type/token confusion between a physical copy of a book and the logical notion of a book
as a class of copies of books with some particular title, author, and ISBN.

To fix the problem, a new word corresponding to a copy of a book must be introduced.
In addition, something has to be done about the fact that only some uses of the word
book in the commands above refer to the concept of a book. The rest refer to the concept
of a copy of a book. The RA provides a special command reformulate (see Figure 4) that
can assist with this kind of conceptual realignment. Using the dependency information
maintained by Cake, the RA propagates the conceptual reorganization throughout the
RKB.

With the last command in Figure 4, the analyst defines a report that the library
management system needs to support. As noted in conjunction with Figure 2, the prin-
ciple output of the RA is the RKB. However, the RA is capable of creating a requirements
document at any time. Portions of the document created after the twelfth command in
Figure 4 are shown in Figure 5.

The transcript in Figure 4 shows that the RA is able to give powerful support to
an analyst during the process of creating a formal requirement based on an informal
requirements sketch. A vital underpinning of this is a deep representation of the evolv-
ing requirement that allows the RA to reason about it. However, the most important
single factor is the library of requirements clichés. This enables the analyst to rapidly
construct a requirement by inspection, by combining requirements clichés. Given the
complexities of requirements analysis, it is natural for the RA to function as an assistant
to a requirements analyst rather than attempting to automate the entire requirements
analysis process.

Other Examples

To see the breadth of applicability of deep representations, inspection methods, and
intelligent assistance, it is useful to consider how they can be applied to areas other than
requirements.

Program design and implementation. A variety of current tools assist with
program construction, including editors, cross-referencers, program generators, and com-
ponent libraries. In general, these tools operate at the level of source code, sometimes

10 Rich & Waters

augmented with parse trees, compiler symbol tables, and the like.

To go dramatically beyond the level of current tools and support complex algorithmic
changes in a program, one has to move beyond superficial representations like parse trees
and use direct representations of control and data flow such as the Plan Calculus [6] to
represent programs and their designs. As compared to program text or parse trees, the
Plan Calculus makes data flow, control flow, and the design of a program more explicit.
This facilitates the direct manipulation of these features. For example, cross-referencing
could be more accurate: When searching for where a variable is set, one could ignore
appearances of the variable that were not in the relevant control-flow path.

Program construction tools could also benefit from the introduction of inspection
methods, as illustrated by the Knowledge-Based Editor in Emacs [6]. This system demon-
strates that a library of implementation clichés represented as plans makes it possible
to support the rapid construction and modification of programs by means of commands
that are phrased in terms of algorithms and their structure rather than program text.
An important feature of this is that using the Plan Calculus as a representation for algo-
rithmic clichés supports more abstract and canonical component libraries, as compared
to using subroutines or program templates.

Looking further into the future, it will be possible to deepen the representations used
in program construction in the direction of making design decisions explicit, as illustrated
in the Design Apprentice scenario in [8].

Reverse engineering. The term reverse engineering has come into use recently to
describe the application of software engineering tools to existing software, i.e., software
not necessarily produced using advanced tools in the first place. Approaching this prob-
lem using shallow representation and procedural methods has led to the development of
a number of useful capabilities.

For example, program restructuring tools are now generally available for a number
of languages. These tools, operating mostly on the level of program syntax, improve
the understandability of source code by replacing go-to instructions with if-then-else,
do-while, and other structured programming constructs. Other reverse engineering tools
help a programmer understand existing software by displaying the static or dynamic
structure of the code graphically and allowing the programmer to easily navigate within
it.

The power of these tools to improve understandability could be increased by using an
explicit representation of algorithmic structure, such as the Plan Calculus. For example,
given a complete data- and control-flow analysis, it would be possible to eliminate not
only dead (unexecutable) code, but also code that was executed but whose results were
not used. Needless shuffling of values among intermediate variables could similarly be
eliminated. It is likely that the internal operation of restructuring tools would also be
simplified by using such a representation, as compared to operating directly on the source
code.

A much deeper level of reverse engineering is illustrated by the Recognizer imple-
mented by Wills [7, 9]. Based on a library of design and implementation clichés repre-
sented using the Plan Calculus, the Recognizer takes a program (which is also represented
using plans) and parses it to determine how the program could have been constructed
using the clichés. Once an on-line representation of its design has been obtained, the

Knowledge-Intensive Tools 11

program can then be modified by other tools at the level of design decisions, just as if it
had originally been developed using a design-level tool.

Totally automatic design reconstruction is not likely to be practical for programs
of realistic size. Therefore, an intelligent assistance approach will be necessary. The
software engineer will need to be involved in the process both to reduce the large search
required and to provide specification information, such as the expected range of input
values, that is missing from the source code.

Testing. Software testing comprises two major subtasks: devising test cases and
executing them. Deeper representations (such as data and control flow) and inspection
methods can help in both of these areas.

Current testing tools already make use of control-flow representations to check the
coverage of a set of test cases, i.e., whether each path through a program is executed by
some test case. Unfortunately, even when using data-flow representations, it is in general
not possible to automatically construct test cases with complete coverage. Inspection
methods provide a complementary approach. There are testing clichés, just as there are
requirements, design, and implementation clichés. For example, it is well known that for
buffered input/output routines it is a good idea to test what happens when the buffer
gets full. An intelligent assistant for testing could suggest clichéd test cases based on the
design of a program.

The major difficulty in executing test cases is deciding which ones to run after a design
change when it is not feasible to run them all. A deeper representation would help here
also: If test cases are indexed according to the design features they test, rather than just
the parts of the code they exercise, it would be easier to select the most relevant tests.
A modest step in this direction is demonstrated in [1].

Systems analysis. At the heart of all current systems analysis tools is some kind of
diagram editor. Engineers can interactively draw boxes and arrows on the screen, with
various annotations on them indicating the type of data, type of operation, etc. The
editor checks that the diagrams are well formed with respect to the syntactic rules of one
of the standard diagramming methodologies.

The information content of the hierarchical box-and-arrow diagrams used in systems
analysis tools is typically represented at a fairly deep level. However, these tools could
benefit from more emphasis on clichés and inspection methods.

The next generation of diagram editors for systems analysis could improve on current
diagram editors in much the same way that the RA improves on current requirements
tools. In current diagram editors, the engineer constructs a system description either
from scratch or by cutting and pasting from existing diagrams, both of which can be
tedious and error-prone. A library of systems analysis clichés would be more than just
a collection of already constructed diagrams. Each systems analysis cliché would be a
schematized diagram with associated defaults, constraints, and explanations. The library
of clichés would be organized taxonomically. As in the RA, the editor would keep track
of how a diagram was constructed out of clichés and support later modification in the
same terms.

It may also be useful to automatically recognize occurrences of clichés in existing
diagrams, in the same way the Recognizer previously described recognizes occurrences

12 Rich & Waters

of clichés in plans. The knowledge associated with clichés in the library may then be
applied to existing diagrams.

Looking further into the future, it will be possible to deepen the representations used
in systems analysis in the direction of more general logical reasoning, which could be
applied, for example, to automating trade-off analysis and checking for deeper logical
inconsistency and incompleteness as in the RA.

An energy barrier. As illustrated by the examples above, deep representation,
inspection methods, and intelligent assistance have the potential of supporting a new
generation of knowledge-intensive software engineering tools significantly more powerful
than those that can be supported with current technology. The current emphasis on
simpler approaches is probably due to the fact that knowledge-intensive approaches have
a significantly larger minimum cost (see Figure 1). This cost forms an energy barrier
which quite naturally inhibits the use of these approaches as long as significant progress
can be made with shallow representations and procedural methods. However, we believe
that the potential of these simple approaches is nearing exhaustion and that knowledge-
intensive techniques will come to the fore over the coming decade.

References

[1] D. Chapman, A Program Testing Assistant, Comm. of the ACM, 25(9):625-634,
September 1982.

[2] E. J. Chikofsky, Computer-Aided Software Engineering (CASE), IEEE Computer Society
Press, Los Alamitos, CA, 1989.

[3] C. Gane, Computer-Aided Software Engineering: The Methodologies, the Products, and
the Future, Prentice Hall, Englewood Cliffs, NJ, 1990.

[4] H.B. Reubenstein and R.C. Waters, “The Requirements Apprentice: Automated
Assistance for Requirements Acquisition] IEFE Transactions on Software Fngineering,
17(3):226-240, March 1991.

[5] C. Rich, “The Layered Architecture of a System for Reasoning about Programs! Proc. of
the 9th Int. Joint Conference on Artificial Intelligence, pp. 540-546, August 1985.

[6] C. Rich and R.C. Waters, The Programmer’s Apprentice, Addison—Wesley, Reading MA
and ACM Press, Baltimore MD, 1990.

[7] C. Rich and L. M. Wills, “Recognizing a Program’s Design: A Graph-Parsing Approach?
IEEE Software, 7(1):82-89, January 1990.

[8] R.C. Waters and Y.M. Tan, “Toward a Design Apprentice: Supporting Reuse and
Evolution in Software Design] ACM SIGSOFT Software Engineering Notes, 16(2):33-44,
April 1991.

[9] L. M. Wills, “Automated Program Recognition: A Feasibility Demonstration? Artificial
Intelligence, 45(1-2):113-171, September 1990.

[10] Proceedings of the 3rd, 4th, and 5th Int. Workshops on Software Specification and Design,
Computer Society Press, Washington DC, 1985, 1987, and 1989.

	Title Page
	Title Page
	page 2

	Knowledge-Intensive Software Engineering Tools
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14

