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Abstract

Lexicalized context-free grammar (LCFGQG) is a tree-based formalism that makes
use of both tree substitution and a restricted form of tree adjunction. Because of
its use of adjunction, LCFG allows sufficient freedom in the way derivations can
be performed that lexicalization of context-free grammars (CFGs) is possible
while preserving the structure of the trees derived by the CFGs. However, the
tree adjunction permitted is sufficiently restricted that LCFGs are string-wise
equivalent to CFGs and have the same cubic-time worst-case complexity bounds
for recognition and parsing.
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1 Introduction

Context-free grammar (CFG) has been a well accepted framework for computational linguistics
for a long time. While it has drawbacks, it has the virtue of being computationally efficient,
O(n?)-time in the worst case for a sentence of length n. In addition, recognition and parsing
algorithms exist that, while being no better than O(n?)-time in the worst case, are very much
better than this in the typical case.

A lexicalized grammar is one where every rule contains an explicit lexical item (e.g., a word
in the lexicon). A grammar formalism F is said to lezicalized by another formalism F” if every
grammar (G written in F can be converted into an equivalent lexicalized grammar G’ in F’.

Lexicalization is of interest from a computational perspective, because other things being
equal, lexicalized grammars can often be parsed much more efficiently than non-lexicalized
ones. Lexicalization is of interest from a linguistic perspective, because most current linguistic
theories give lexical accounts of a number of phenomena that used to be considered purely
syntactic.

In general, CFGs are not lexicalized since they allow rules such as § — NP VP that do not
locally introduce lexical items. In contrast, the well-known Greibach Normal Form (GNF') for
CFG is lexicalized, because the first item on the right-hand side of every rule is required to be
a lexical item (e.g., S — John VP).

It can be shown that for any CFG G (that does not derive the empty string), there is a GNF
grammar G’ that derives the same strings [3]. For most grammars G, strings can be recognized
much more quickly using G’ than G, using left-to-right bottom-up algorithms.

Unfortunately, for most grammars (7, it is not possible for the set of trees produced by G’
to be the same as the set of trees produced by G. As a result, parsing with G’ does not produce
the same result as parsing with .

Therefore, while GNF lexicalizes CFGs, this is only a weak lexicalization in the sense that
while it preserves the sets of strings produced by the original grammar, it does not preserve the
set of trees produced. Of more interest is strong lexicalization that preserves tree sets as well
as string sets.

In the following, we use the term lexicalization only its strong sense. Note that in this
strong sense, GNF does not lexicalize CFG. One can go further than this and say that CFG
does not lexicalize CFG. The fundamental reason for this is that CFG specifies a one-to-one
mapping from derivations to trees. Changing a rule that participates in any derivations changes
the tree set. To achieve the lexicalization of CFGs one must switch to a formalism with greater
derivational freedom, i.e., one where it is possible to modify a grammar in interesting ways
without changing the tree set.

An interesting example of a formalism with greater derivational freedom than CFG is tree
substitution grammar (TSG) [4]. In TSG, the combining operation is substitution just as in
CFG, however, the items to be combined are extended to multi-level trees (called initial trees)
instead of just one-level rules. Substitution combines two trees by replacing a leaf in one tree
with another tree. A TSG G can be altered by combining initial trees with substitution to
create larger initial trees without changing the trees produced.

The extra derivational freedom provided by TSG makes it possible to lexicalize many CFGs.
However, as shown by Schabes and Joshi [7, 4], TSG cannot be used to lexicalize every CFG.

Derivational freedom can be increased further by using the context-sensitive operation of
adjunction. Adjunction combines two trees by expanding an internal node in one tree by
inserting another tree. This opens up many more possibilities for altering a grammar without
changing the trees produced and makes it possible to lexicalize CFG. In particular, Schabes
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and Joshi [7, 4] have shown that lexicalized tree adjoining grammar (LTAG) lexicalizes CFG in
the strong sense defined above.

Unfortunately, context-sensitive operations entail much larger computation costs for parsing
and recognition than CFGs. In particular, the fastest known LTAG parser requires O(n®)-
time in the worst case in contrast to O(n®) for CFG. As a result, there are no computational
advantages to lexicalizing a grammar using LTAG because the speedup due to the grammar
becoming lexicalized is swamped by the dramatic increase in fundamental worst-case cost.

Heretofore, every method for lexicalizing CFGs in the strong sense defined above has re-
quired context-sensitive operations [4]. As a result, every method for lexicalizing CFGs has
shared with LTAG the unfortunate feature that lexicalization leads to dramatically decreased
rather than increased computational performance.

The primary contribution of the work presented here is a grammar formalism called lexical-
ized context-free grammar (LCFG) that lexicalizes CFG while retaining O(n?)-time worst-case
computation bounds. This formalism allows the inherent computational advantages of lexical-
ization to be realized.

Like LTAG, LCFG allows adjunction. However, LCFG only allows a very restricted form
of adjunction that is context-free in nature. As a result, LCFGs are only capable of generating
context-free languages and are subject to the same worst case computation bounds as CFGs.

The second contribution of this work is an easily automatable procedure for converting any
CFG @ into an equivalent LCFG G’. The final contribution of this work is a highly efficient
Earley-style parser for LCFG that maintains the valid prefix property. At least for many
grammars (¢, it should be possible to use this parser to parse strings using G’ significantly
faster than can be done by a parser working directly with G.

The following sections: present LCFG, discuss lexicalization in more detail, prove that
LCFG lexicalizes CFG by showing a constructive lexicalization procedure, prove that LCFG
can be parsed in O(n?)-time by exhibiting a simple O(n?)-time parser, and describe a highly
efficient parser for LCFG.
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2 Lexicalized Context-Free Grammar

Lexicalized context-free grammar (LCFG) [11] is a tree generating system that is a restricted
form of lexicalized tree-adjoining grammar (LTAG) [7, 4]. Informally speaking, the grammar
consists of two sets of trees: initial trees, which are combined by substitution and auxiliary
trees, which are combined by adjunction. An LCFG is lexicalized because every initial and
auxiliary tree is required to contain a terminal symbol on its frontier.

Definition 1 (LCFG) An LCFG is a five-tuple (X, NT,1,A,S), where ¥ is a set of terminal
symbols, NT is a set of non-terminal symbols, I and A are finite sets of finite trees labeled by
terminal and non-terminal symbols, and 5 is a distinguished non-terminal start symbol. The
set 1 U A is referred to as the elementary trees.

The interior nodes in each elementary tree are labeled by non-terminal symbols. The nodes
on the frontier of each elementary tree are labeled with terminal symbols, non-terminal symbols,
and the empty string (¢). At least one frontier node is labeled with a terminal symbol. With
the possible exception of one (see below), the non-terminal symbols on the frontier are marked
for substitution. (By convention, substitutability is indicated in diagrams by using a down
arrow (] ).) Frontier nodes labeled with ¢ are referred to as empty.

The difference between auxiliary trees and initial trees is that each auxiliary tree has exactly
one non-terminal frontier node that is marked as the foot. The foot must be labeled with the
same label as the root. (By convention, the foot of an auxiliary tree is indicated in diagrams
by using an asterisk (x).) The path from the root of an auxiliary tree to the foot is called the
spine.

Auxiliary trees in which every non-empty frontier node is to the left of the foot are called left
auxiliary trees. Similarly, auxiliary trees in which every non-empty frontier node is to the right
of the foot are called right auxiliary trees. Other auxiliary trees are called wrapping auxiliary
trees.!

LCFG does not allow adjunction to apply to foot nodes or nodes marked for substitution.
LCFG allows the adjunction of a left auxiliary tree and a right auxiliary tree on the same node.
However, LCFG does not allow the adjunction of either two left or two right auxiliary trees on
the same node.

Crudially, LCFG does not allow wrapping auxiliary trees. It does not allow elementary
wrapping auxiliary trees, and it does not allow the adjunction of two auxiliary trees, if the
result would be a wrapping auxiliary tree.

Figure 1, shows seven elementary trees that might appear in an LCFG for English. The
trees containing ‘boy’, ‘saw’, and ‘left’ are initial trees. The remainder are auxiliary trees.

An LCFG derivation must start with an initial tree rooted in 5. After that, this tree can be
repeatedly extended using substitution and adjunction. A derivation is complete when every
frontier node is labeled with a terminal symbol.

As illustrated in Figure 2, substitution replaces a node marked for substitution with a copy
of an initial tree.

Adjunction inserts a copy of an auxiliary tree T into another tree at an interior node 5 that
has the same label as the root (and therefore foot) of 7'. In particular, 5 is replaced by a copy
of T and the foot of the copy of T is replaced by the subtree rooted at 1. The adjunction of
a left auxiliary tree is referred to as left adjunction (see Figure 3). The adjunction of a right
auxiliary tree is referred to as right adjunction (see Figure 4).

'In [11] these three kinds of auxiliary trees are referred to differently as right recursive, left recursive, and
centrally recursive, respectively.
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Figure 5: Wrapping adjunction.

LCFG’s prohibition on wrapping auxiliary trees can be rephrased solely in terms of elemen-
tary trees. To start with, there must be no elementary wrapping auxiliary trees. In addition,
an elementary left (right) auxiliary tree cannot be adjoined on any node that is on the spine
of an elementary right (left) auxiliary tree. Further, no adjunction whatever is permitted on
a node 7 that is to the right (left) of the spine of an elementary left (right) auxiliary tree 7.
(Note that for T' to be a left (right) auxiliary tree, every frontier node subsumed by 1 must be
labeled with ¢.)

Tree adjoining grammar formalisms typically forbid adjunction on foot nodes and substitu-
tion nodes. In addition, they typically forbid multiple adjunctions on a node. However, in the
case of LCFG, it is convenient to relax this latter restriction slightly by allowing right and left
adjunction on a node, but at most once each. (Due to the other restrictions placed on LCFG,
this relaxation increases the trees that can be generated without increasing the ambiguity of
derivations.)

2.1 Comparison of LCFG With Other Formalisms

The only important difference between LCFG and LTAG is that LTAG allows both elementary
and derived wrapping auxiliary trees. The importance of this is that wrapping adjunction (see
Figure 5) encodes string wrapping and is therefore context sensitive in nature. In contrast, left
and right adjunction (see Figures 3 & 4) merely support string concatenation. As a result, while
LTAG is context sensitive in nature, LCFG is limited to generating only context-free languages.

To see that LCFGs can only generate context free languages, consider that any LCFG &
can be converted into a CFG generating the same strings in two steps as follows. First, G is
converted in to a TSG G’ that generates the same strings. Then, this TSG is converted into a
CFG G".

A TSG is the same as an LCFG (or LTAG) except that there cannot be any auxiliary trees.
To create G’ first make every initial tree of G be an initial tree of G'. Next, make every auxiliary
tree T of G be an initial tree of G'. When doing this, relabel the foot of T" with ¢ (turning T
into an initial tree). In addition, let A be the label of the root of T'. If T"is a left auxiliary tree,
rename the root to Ay; otherwise rename it to Ag.

To complete the creation of G' alter every node 7 in every elementary tree in G’ as follows:
Let A be the label of n. If left adjunction is possible at n add a new first child of n labeled Ap,
mark it for substitution, and add a new rule Ay, — ¢. If right adjunction is possible at n add a
new last child of 5 labeled Ag, mark it for substitution, and add a new rule Ap — «¢.

The TSG G’ generates the same strings as G, because all cases of adjunction have been
changed into equivalent substitutions. Note that the transformation would not work if LCFG
allowed wrapping auxiliary trees. The TSG G’ can be converted into a CFG G” by renaming
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Figure 6: The tree and string complexity of LCFG and several other formalisms

internal nodes so that they are unique and then decomposing the trees into one-level rules.

Although the string sets generated by LCFG are the same as those generated by CFG,
LCFG is capable of generating more complex sets of trees than CFGs. In particular, it is
interesting to look at the path sets of the trees generated. (The path set of a grammar is the
set of all paths from root to frontier in the trees generated by the grammar. The path set is a
set of strings over X U NT' U {¢}.)

The path sets for CFG (and TSG) are regular languages [14]. In contrast, just as for
LTAGS and TAGS, the path sets for LCFGs are context-free languages. To see this, consider
that adjunction makes it possible to embed a sequence of nodes (the spine of the auxiliary tree)
in place of a node on a path. Therefore, from the perspective of the path set, auxiliary trees
are analogous to context-free productions.

Figure 6 summarizes the relationship between LCFG and several other grammar formalisms.
The horizontal axis shows the complexity of strings that can be generated by the formalisms,
i.e., regular languages (RL), context-free languages (CFL), and tree adjoining languages (TAL).
The vertical axis shows the complexity of the path sets that can be generated.

CFG (and TSG) create context-free languages, but the path sets they create are regular
languages. LTAG and TAG generate tree adjoining languages and have path sets that are
context-free languages. LCFG is intermediate in nature. It can only generate context-free
languages, but has path sets that are also context-free languages.
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3 Lexicalization

The question of whether a grammar is lexicalized is relevant no matter what the grammar is
stated in terms of. The key concept is that each structure (e.g., production rule, elementary
tree) in the grammar contains a lexical item that is realized. More precisely, a lexicalized
grammar [9, 7] can be defined as follows:

Definition 2 (Lexicalized Grammars) A lexicalized grammar consists of a finite set of ele-
mentary structures of finite size, each of which contains an overt (i.e., non-empty) lexical item,
and a finite set of operations for creating derived structures.

The overt lexical item in an elementary structure is referred to as its anchor. If more than
one lexical item appears, either just one lexical item is designated as the anchor or a subset of
the lexical items local to the structure are designated as a multi-component anchor.

Note that Categorial Grammars [5, 13] are lexicalized according to the definition above since
each basic category has a lexical item associated with it.

A lexicalized grammar can be organized as a lexicon where each lexical item is associated
with a finite number of structures for which that item is the anchor. This facilitates efficient
parsing by, in effect, allowing the grammar to be dynamically restricted to only those rules that
are relevant to the words that actually appear in a given sentence.

If each elementary structure contains a lexical item as its leftmost non-empty constituent,
the grammar is said to be left anchored. This facilitates efficient left to right parsing.

Definition 3 (lexicalization [4]) A formalism F' is lexicalized by another formalism F”, if
for every finitely ambiguous grammar G in F' that does not derive the empty string, there is a
lexicalized grammar G in F’ such that G and G’ generate the same tree set (and therefore the
same string set). A lexicalization procedure is a procedure that generates G’ from G.

The restrictions on the form of &' are motivated by two key properties of lexicalized gram-
mars [4]. Lexicalized grammars cannot derive the empty string, because every structure intro-
duces at least one lexical item. Thus, if a grammar is to be lexicalized, it must not be the case
that S=¢. Lexicalized grammars are finitely ambiguous, because every rule introduces at least
one lexical item into the resulting string. Thus, if a grammar is to be lexicalized, it must be
only finitely ambiguous. In the case of a CFG, this means that the grammar cannot contain
either elementary or derived recursive chain rules X =X.

As a focal point for discussion, consider the CFG in Figure 7. The language generated by
this grammar is a*. The tree set has the property that for any integer ¢ it includes a tree where
the shortest path from the root to any leaf is longer than . In particular, in addition to many
other trees, the CFG in Figure 7 generates a balanced tree of the form shown on the right of
the figure with minimum path length ¢ + 1 for the string «*. As argued in [4], due to the
unbounded nature of the trees produced, neither GNF, CFG, nor TSG is capable of lexicalizing
the grammar in Figure 7.

3.1 GNF Does Not lexicalize CFG

Greibach normal form (GNF') is a restricted form of CF'G where every production rule is required
to be of the form A — aa (where A is a non-terminal symbol, a is a terminal symbol, and «
is a possibly empty string of non-terminal symbols). Every GNF is lexicalized, because every
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Figure 7: An example CFG and a tree it derives.
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Figure 8: A GNF corresponding to Figure 7 and a tree it derives.

rule locally introduces a lexical item (@), and like any CFG, GNF is required to have a finite
number of finite rules.

The CFG in Figure 7 can be put into GNF as shown in Figure 8. However, this GNF is not
a strong lexicalization of the grammar in Figure 7, because while the two grammars generate
the same language, they do not generate the same trees. In particular, the GNF shown only
generates right linear trees like the one shown on the right of Figure 8.

No GNF grammar can produce the same tree set as the CFG in Figure 7, because no matter
what the GNF grammar looks like, it is guaranteed that the first rule applied in any derivation
will have a terminal symbol as its leftmost constituent. As a result, the length of the leftmost
path in every tree derived by any GNF grammar is one.

3.2 CFG Does Not Lexicalize CFG

The same basic argument that can be used to show that GNF does not lexicalize CFG can be
used to show that CFG does not lexicalize CFG. For a CFG to be lexicalized, every rule must
contain at least one terminal on its right-hand side. As a result, every generated tree must
contain at least one path of length one. Therefore, no lexicalized CFG can generate the tree
shown in Figure 7.
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a

(1) (2)
Figure 9: An LCFG that lexicalizes the CFG in Figure 7.

3.3 TSG Does Not Lexicalize CFG

To see that no TSG lexicalizes the CFG in Figure 7 while preserving the trees generated,
consider the following. For a TSG G to be lexicalized, it must consist of a finite number of
finite initial trees and each tree must contain a lexical item. For each of these trees consider
the length of the shortest path from the root to a non-terminal. Let ¢ be the maximum of these
shortest lengths. The topmost portion of any tree T" derived by G is one of the initial trees of
G. Therefore, the shortest path from the root to a non-terminal in 7" must be no longer than
t. This is incompatible with the fact that there is no bound on the shortest path from the root
to a terminal in the trees generated by the grammar in Figure 7.

3.4 LCFG Lexicalizes CFG

As argued in the next section, LCFG does lexicalize CFG. However, before looking at this in
detail, it is instructive to consider how adjunction makes it possible to lexicalize the grammar
in Figure 7.

The CFG in Figure 7 is lexicalized by the LCFG in Figure 9. This LCFG consists of one
initial tree (1) and one right auxiliary tree (2).

Every derivation using the grammar in Figure 9 begins by instantiating the initial tree (1).
This produces the only possible tree whose fringe is a. One can then continue by adjoining
the auxiliary tree (2) on the root of the initial tree (1) to produce the only possible tree whose
fringe is aa.

S

/\

S
|
a

L — O

Before adjoining the auxiliary tree (2) onto the root of the initial tree (1), one could adjoin
the auxiliary tree (2) onto itself at either the root or its right child. These two adjunctions
result in the two derived auxiliary trees shown in Figure 10.
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Figure 10: Some derived auxiliary trees.

Adjoining the derived auxiliary trees (3 & 4) on the initial tree (1) results in the two trees
that have aaa as their fringe. By adjoining the elementary auxiliary tree (2) a second time on
the derived trees (3 & 4) and so on, one can create every possible tree whose fringe is in a*. In
particular, adjoining the elementary auxiliary tree (2) to the right child of the root of the the
derived auxiliary tree (3) creates the following:

S

N

NN
|

S
|
a

O — O

If this tree is adjoined on the initial tree (1), the balanced tree in Figure 7 results. The key
thing to notice about the derived auxiliary tree above is that the minimum distance from the
root to a non-terminal is 3—greater than the minimum distance to a non-terminal in either of
the elementary trees.

In general, the reason that adjunction allows lexicalization, is that starting with initial
trees of bounded size, it is possible to generate trees of unbounded size, while at every step
introducing non-terminals. This can be done, because the path from the root of a derived tree
to a non-terminal can be altered after it is first introduced.
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4 LCFG Lexicalizes CFG

In the following, we give a constructive proof of the fact that LCFG lexicalizes CFG.

Theorem If G = (X, NT,P,5)is afinitely ambiguous CFG that does not generate the empty
string, then there is an LCFG G, = (X, NT,1, A, 5) generating the same language and tree set
as g. Furthermore, G;, can be chosen so that all the auxiliary trees are right auxiliary trees.

As usual, a CFG G is a four-tuple (X, NT,P,S) where ¥ is a set of terminal symbols,
NT is a set of non-terminal symbols, P is a finite set of finite production rules that rewrite
non-terminal symbols to strings of terminal and non-terminal symbols, and § is a distinguished
non-terminal symbol that is the start symbol of any derivation.

To prove the theorem, we first prove a somewhat weaker theorem and then extend the proof
to the full theorem. In particular, we assume for the moment that the set of rules for GG' does
not contain any empty rules of the form A — ¢.

Step 1 We begin the construction of Gz, by constructing a directed graph LG that we call the
lezicalization graph. Paths in LG correspond to leftmost paths from root to frontier in (partial)
derivation trees rooted at non-terminal symbols in G.

LG contains a node for every symbol in X U NT and an arc for every rule in P as
follows. For each terminal and non-terminal symbol X in G create a node in LG
labeled with X. For each rule X — Ya in G (Y € ¥ U NT') create a directed arc
labeled with X — Ya from the node in LG labeled with X to the node labeled Y.

Consider the example CFG in Figure 11. For this grammar, Step 1 creates the LG shown
in Figure 12.

The significance of LG is that there is a one-to-one correspondence between paths in LG
ending on a terminal and left-corner derivations in . A left-corner derivation in a CFG is a
(partial) derivation starting from a non-terminal where every expanded node (other than the
root) is the leftmost child of its parent and the left corner is a terminal. A left-corner derivation
is uniquely identified by the list of rules applied. Since GG does not have any empty rules, every
rule in & is represented in LG. Therefore, every path in LG ending on a terminal corresponds
to a left-corner derivation in GG and vice versa.

S—AA
S— B A
A— BB
B—AS
B—b

Figure 11: An example grammar.

S-BA

Figure 12: The LG created by Step 1.
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Figure 13: Initial trees created by Step 2.

(1)

Step 2 The set of initial trees I for G, is constructed with reference to LG. In particular, an
initial tree is created corresponding to each acyclic path in LG that starts at a non-terminal
symbol X and ends on a terminal symbol y. (An acyclic path is a path that does not visit any
node twice.)

For each acyclic path in LG from X to y, construct an initial tree T as follows.
Start with a root labeled X. Apply the rules in the path one after another, always
expanding the left-corner node of T'. While doing this, leave all the non-left-corner
non-terminal symbols in T" unexpanded, and mark them as substitution nodes.

Given the example grammar in Figure 11 and its corresponding LG in Figure 12, this step
produces the initial trees shown in Figure 13.

Each initial tree created is lexicalized, because each one has a terminal symbol as the leftmost
element of its frontier. (The last rule in each of the selected paths is a rule where the leftmost
element on the right-hand side is a terminal.)

A finite set of finite initial trees is created, because a finite set of finite paths is selected.
(Any directed graph containing a finite number of nodes and arcs has only a finite number of
acyclic paths, each of which has a finite length.)

Most importantly, the set of initial trees created is the set of non-recursive left-corner
derivations in (. (There is a one-to-one correspondence between paths in LG and left-corner
derivations, and we have chosen every non-recursive path.)

Step 3 This step constructs a set of right auxiliary trees corresponding to the cyclic path
segments in LG. In particular, an auxiliary tree is created corresponding to each minimal cycle
in LG. (A minimal cycle is a path that does not visit any node twice, except for the node it
starts and ends on.)

For each minimal cycle in LG from a node X to X, construct an auxiliary tree T’ by
starting with a root labeled X and repeatedly expanding left-corner frontier nodes
using the rules in the path as in Step 2. When all the rules in the path have been
used, the left-corner frontier node in 7" will be labeled X. Mark this as the foot
node of T'. While doing the above, leave all the other non-terminal symbols in T
unexpanded, and mark them all as substitution nodes.

The LG in Figure 12 has two minimal cyclic paths (one from A to A via B and one from
B to B via A). For these cycles, Step 3 creates the two auxiliary trees shown in Figure 14, one
for A and one for B.
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A B
B B. A Si
A* St B* B.

Figure 14: Auxiliary trees created by Step 3.

Asin Step 2, a finite set of finite trees is created, because a finite set of finite paths is selected.
(A finite graph can have only finitely many minimal cycles, each of which has finite length.)
However unlike Step 2, the auxiliary trees created in Step 3 are not necessarily lexicalized.

Consider the set of trees that can be created by adjoining auxiliary trees from Step 3 with
each other and the initial trees from Step 2. This resulting set of trees is the set of every
left-corner derivation in G.

To see this, consider that every path in LG can be represented as an initial acyclic path with
zero or more minimal cycles inserted intoit. Given the one-to-one correspondence between paths
in LG and left-corner derivations, this implies that any left-corner derivation can be generated
by adjoining auxiliary trees corresponding to minimal cycles into initial trees corresponding to
acyclic paths ending on terminals.

For instance, the path 5, B, A, B, bin Figure 12 is the acyclic path 5, B, b with the minimal
cycle B, A, B inserted into it. The corresponding left-corner derivation in ' (shown below) is
the second initial tree in Figure 13 with the second auxiliary tree in Figure 14 adjoined on the

node labeled B.
S

/\

B Al

/N

A St

/N

B B!
|
b

Consider the set of trees that can be created by combining the initial trees from Step 2 with
the auxiliary trees from Step 3 using both adjunction and substitution. This resulting set of
trees is the tree set of G.

To see this, consider that every derivation in G can be decomposed into left-corner deriva-
tions in G that are combined with substitution and vice versa. In particular, every terminal
node that is the leftmost child of its parent is the left-corner of a separate left-corner derivation.

For instance, the derived tree shown below is composed of 7 left-corner derivations. From
left to right along the fringe, these are the second initial tree with the second auxiliary tree
adjoined into it, and the fourth, second, third, fourth, third, and fourth initial trees respectively.
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Step 4 This step lexicalizes the set of auxiliary trees built in step 3, without altering the trees
that can be derived.

For each auxiliary tree T built in step 3, consider the frontier node n just to the
right of the foot. If this node is a terminal do nothing. Otherwise, remove T’ from
the set of auxiliary trees. Then, add every auxiliary tree that can be constructed
by substituting a compatible initial tree from Step 2 for 5 in 7.

Note that since G is finitely ambiguous, there must be a frontier node to the right of the
foot of an auxiliary tree T. If not, T would correspond to a derivation X=X in ( and & would
be infinitely ambiguous.

In the case of our continuing example, Step 4 results in the auxiliary trees in Figure 15.

After Step 4, every auxiliary tree is lexicalized, since every tree that does not have a terminal
to the right of its foot is replaced by one or more trees that do. Since there were only a finite
number of finite initial and auxiliary trees to start with, there are still only a finite number of
finite auxiliary trees.

A A
o |
2y

1

| | |
b b

(1a) ° (1b) (2)

Figure 15: Auxiliary trees created by Step 4.

B B
N
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The change in the auxiliary trees caused by Step 4 does not alter the set of trees that can
be produced. The only action of Step 4 was to eliminate some nodes where substitution was
previously possible. Whenever this was done, new trees were created corresponding to every
substitution that could ever be done at these nodes.

Note that the initial trees are left anchored and the auxiliary trees are almost left anchored
in the sense that the leftmost frontier node other than the foot is a terminal. This facilitates
efficient left to right parsing.

The procedure above creates a lexicalized grammar that generates exactly the same trees as
G and therefore the same strings. The only remaining issue is the auxiliary assumption that G
does not contain empty rules. This assumption can be dispensed with in two steps as follows.

First, any finitely ambiguous CFG that does not derive the empty string can be converted
into a TSG that generates the same trees and does not contain any empty trees. (An empty
tree is a tree where every element of the frontier is labeled with ¢.) Second, the lexicalization
procedure above can straightforwardly be extended to lexicalize any finitely ambiguous TSG
that does not generate the empty string and does not contain any empty trees.

Suppose GG contains one or more empty rules. One first constructs an equivalent TSG G,
by converting every rule A — «a into a one-level tree. In this tree, the root is labeled A and
the elements of a become the labels of its children. Any non-terminal children are marked
for substitution. This conversion does not change the trees that can be generated in any way.
There is at least one empty tree in G’.

The empty trees in G’ are eliminated by substituting them wherever possible as follows.
Suppose T is an empty tree in G’ whose root is labeled A. (Note that since G does not derive
the empty string, the root of 7" is not labeled 5.) For every substitutable node 5 in G’ labeled
A: Make a copy of the tree containing n with T" substituted for 5. If there is no tree other
than 7 that can be substituted for 5, discard the original tree containing 1. Note that this step
might generate additional empty trees, but it cannot generate a new empty tree whose root is
labeled A. (If it did, that would mean that there was previously a tree whose root is labeled A
and all the non-empty frontier elements are labeled A. Given that there is also an empty tree
whose root is labeled A, this implies that & is infinitely ambiguous in the way it derives the
empty trees.) The process above is iterated until no empty trees remain.

The grammar G” which results from the elimination of the empty trees in G’ still generates
exactly the same trees. The only change is that every empty subtree that can be created by &G
has been created and substituted everywhere it can appear.

With minor modifications, the lexicalization procedure above can now be used to lexicalize
G". The key change is to modify LG to take account of trees instead of rules and trees whose
left corner is €. The restated algorithm is as follows.

Step 1’ LG contains a node for every terminal and non-terminal symbol and an
arc for every initial tree as follows. For each terminal and non-terminal symbol X
in the grammar create a node in LG labeled with X. For each initial tree T, let
X be the label of the root of T"and Y (Y € ¥ U NT') be the label of the leftmost
frontier node that is not labeled with ¢. Create a directed arc labeled with T' from

the node in LG labeled with X to the node labeled Y.

There is a one-to-one correspondence between the modified LG and leftmost-nonempty
derivations. A leftmost-nonempty derivation in a CFG is a (partial) derivation starting from
a non-terminal where every expanded node (other than the root and nodes that head empty
subtrees) is the leftmost child of its parent that does not head an empty subtree; and the
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leftmost non-empty node on the frontier is a terminal. With left-corner derivations replaced by
leftmost-nonempty derivations, the rest of the procedure goes through as before.

Step 2’ For each acyclic path in LG from X to y, construct an initial tree T as
follows. Start with the tree corresponding to the first arc in the path. Substitute the
trees in the rest of the path one after another, always substituting for the leftmost
non-empty node of T'. While doing this, leave all the other substitution nodes in T
unchanged.

Step 3’ For each minimal cycle in LG from a node X to X, construct an auxil-
iary tree T by starting with the tree corresponding to the first arc and repeatedly
substituting for the leftmost non-empty frontier node using the trees in the rest of
the path as in Step 2’. When all the trees in the path have been used, the leftmost
non-empty frontier node in T" will be labeled X. Change this from a substitution
node to one marked as the foot of 7. While doing the above, leave all the other
substitution nodes in T unchanged.

Step 4’ For each auxiliary tree T built in step 3’, consider the first non-empty
frontier node n to the right of the foot. If this node is a terminal do nothing.
Otherwise, remove T from the set of auxiliary trees. Then, add every auxiliary tree
that can be constructed by substituting a compatible initial tree from Step 2’ for
inT.

4.1 Efficiency Improvements To the Lexicalization Procedure

In the interest of simplifying the proof of the theorem, the presentation of the lexicalization
procedure above was optimized for clarity, rather than for producing the best LCFG possible.
When implementing the procedure steps should be made to minimize the size of the grammar
produced and ensure that unnecessary ambiguity is not introduced into the grammar.

In the worst case, the number of initial and auxiliary trees in Gy, can be very much greater
than the number of production rules in . In particular, the number of elementary trees in
Gy, is related to the number of acyclic and minimal cycle paths in LG. In the worst case, this
number can rise very fast as a function of the number of arcs in LG (that is to say, as a function
of the number of rules in P). (A fully connected graph of n? arcs between n nodes has n! acyclic
paths and n! minimal cycles.)

Fortunately, a truly exponential explosion is unlikely in the typical case; and in the typical
case, a lot can be done to reduce the number of elementary trees required for lexicalization.

In particular, there are several places in the algorithm where alternative choices for how to
proceed are possible. By picking the best of these choices, a smaller LCFG can be produced.
For instance, when lexicalizing the auxiliary trees created in step 2, you need not do anything
if there is any frontier node that is a terminal. Further, if a frontier node must be expanded,
you can choose the node that corresponds to the smallest number of initial trees, rather than
the leftmost. Using this approach, one can lexicalize the grammar in Figure 11 using just the
two auxiliary trees shown below.
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B
A A
/\ A S
B B B* B
A* S b b
Alternatively, everywhere in the procedure, the word ‘right’ can be replaced by ‘left” and
vice versa. This results in the creation of a set of right anchored initial trees and left auxiliary
trees. This can be of interest when the LG corresponding to right-corner derivations has fewer

cycles than the LG corresponding to left-corner derivations. For instance, consider the following
example:

S—AA
S— B A
A— BB
B—ASa
B—b

The LG corresponding to left-corner derivations for this grammar is the same as in Figure 12,
however, the LG for right-corner derivations has no cycles:

SLAA B - ASa a
A-BB

s<:> A—p B <

B-b b

Using the LG for right-corner derivations, the grammar above can be lexicalized using an LCFG
that does not require any auxiliary trees and is therefore merely a TSG.

Going beyond this, one is not limited to using either all leftmost or all rightmost arcs in
LG. When adding the arc for a rule A — «a one is free to connect the arc from A to any
symbol (other than the empty string) in o. The only requirement is that every minimal cycle
in the resulting LG must consist solely of either leftmost or rightmost derivation arcs and when
when a minimal cycle is nested in another minimal cycle, the two cycles must have the same
kind of arcs. Arcs that do not participate in any cycles do not need to be either leftmost or
rightmost, because they will not contribute to any auxiliary trees. Using the full freedom of
choice indicated above, one can often create an LG that has many fewer acyclic paths and
minimal cycles than the LG corresponding to left- (or right-) corner derivations.

In the simple form presented above, the lexicalization procedure can result in an LCFG G,
that is ambiguous in the way it creates the derivation trees of . This matters because it adds
to the time required to parse with G'r. As an illustration of this problem, consider the following
left-corner derivation in the CFG in Figure 11.
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This can be created by starting from the first initial tree in Figure 13 and adjoining the
first auxiliary tree in Figure 14 at A. However, it can also be created by starting from the first
initial tree in Figure 13 and adjoining the second auxiliary tree in Figure 14 at B.

In general, the longer the minimal cycles in L, the greater ambiguity there will be in the way
Gy, derives trees. Fortunately, by introducing constraints on what auxiliary trees are allowed to

adjoin on what nodes in which initial trees, it is possible to greatly reduce and often completely
eliminate this ambiguity.
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5 LCFG is Cubic-Time Parsable

Since LCFG is a restricted case of tree-adjoining grammar (TAG), standard O(n®)-time TAG
parsers [15, 8, 6] can be used for parsing LCFG. Further, they can be straightforwardly modified
to require at most O(n*)-time when applied to LCFG. However, this still does not take full
advantage of the context-freeness of LCFG.

This section proves that LCFG is parsable in O(n?)-time by exhibiting a simple bottom-up
recognizer for LCFG that is in the style of the CKY parser for CFG. The next section describes
a much more efficient (and more elaborate) recognizer for LCFG that achieves the same worst
case bounds.

5.1 Terminology

Suppose that G = (X, NT,1,A,S) is an LCFG and that aq ---a, is an input string. Let n be
a node in an elementary tree (identified by the name of the tree and the position of the node
in the tree).

Label(n) € XU NT Uce is the label of the node. The predicate IsInitialRoot(n) is true if and
only if 7 is the root of an initial tree. Parent(n) is the node that is the parent of  or L if 1 has
no parent. FirstChild(7) is the node that is the leftmost child of 5 or L if 5 has no children.
Sibling(7n) is the node that is the next child of the parent of 5 (in left to right order) or L if
there is no such node. The predicate Substitutable(p,n) is true if and only if 7 is marked for
substitution and p is the root of an initial tree that can be substituted for 7.

If pis the root of an auxiliary tree, then Foot(p) is the foot of the tree, otherwise Foot(p) = L.
Conversely if ¢ is the foot of an auxiliary tree then Root(¢) is the root of the tree, otherwise
Root(¢) = L. The predicate Adjoinable(p, ) is true if and only if p is the root of an elementary
auxiliary tree that can adjoin on 7. The predicate Radjoinable(p, n) is true if and only if p is the
root of an elementary right auxiliary tree that can adjoin on 7. The predicate Ladjoinable(p, 1)
is true if and only if p is the root of an elementary left auxiliary tree that can adjoin on 7.

Figure 16 shows a tree generated by (. The bottommost node labeled A is an instance of
a node n in some elementary tree T'. The bottommost node labeled B is the corresponding
instance of the root p of T'. The middle node labeled A is an instance of the root 5y, of a left
auxiliary tree that was adjoined on 7. The topmost node labeled A is an instance of the root
nr of a right auxiliary tree that was adjoined on 7. Similarly, the topmost node labeled B is

Figure 16: Segments of the fringe of a generated tree.
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an instance of the root pr of a left auxiliary tree adjoined on p. In the following these nodes
will be referred to as A<«n, B<p, A<np, A<—np, and B<pp, respectively.

It is useful to have names for various segments of the fringe of the tree generated by G. In
the order of the numbered substrings along the bottom of Figure 16, the segments of interest
are: The span wy of A<—n is the fringe of the subtree rooted at A<—n. The left concatenated
string wy of A<—n is the portion of the span of A< np, that is left of the span of A<1n. The
right concatenated string ws of A< is the portion of the span of A<np that is right of the
span of A<—n. The basic left context wy of A< is the left concatenated string of B<—p plus
the portion of the span of B<—p that is left of the left concatenated string of A<—n and the
span of A<—n. The far left context ws of A<—n is everything from the extreme left corner of the
whole generated tree up to but not including the basic left context of A<n.

If there is no left auxiliary tree adjoined on 7, then the left concatenated string of A< is
empty. If there is no right auxiliary tree adjoined on 7, then the right concatenated string of
A<—n is empty. If n is the root of an elementary tree, then n and p and therefore A<—n and
B<p are the same node, and the basic left context of A< is empty.

If n is on the spine of an auxiliary tree T, then the coverage of A< is the span of A<«n
with the span of the node filling the foot of T" removed. If 5 is not a spine node, then the
coverage of A<—n is the same as the span of A<17. (Since LCFG does not allow wrapping
auxiliary trees, the coverage of an instance a node is always a single contiguous string. There
can be tree structure on both sides of a foot, but the frontier of one of these sides must consist
solely of nodes labeled with ¢.)

Since substitution nodes and foot nodes ¢ are replaced during derivations, they do not
appear directly in derived trees. However, a node that replaces such a node ¢ is taken to be
an instance of ¢ (as well as an instance of the node it is a copy of). For example, the root
corresponding to A<y, was replaced by A<—5. The span of the instance of this root is therefore
the span of A<, while the coverage of the instance of this root is the empty string.

5.2 A Simple CKY-Style Parsing Algorithm

We can assume without loss of generality that every node in I U A has at most two children.
(By adding new nodes, any LCFG can be transformed into an equivalent LCFG satisfying this
condition. This transformation can be readily reversed after one or more parses have been
found.) The more efficient parser in Section 6 directly supports nodes with more than two
children.

The algorithm stores pairs of the form [n,code] in an n by n array C. In a pair, code is
a set over the universe L (for left adjunction) and R (for right adjunction). The fact that
[1, code] € C[i, k] means that there is some derivation of some string in which an instance of 5
accounts for the substring a;41 - - - a;. More precisely, for every node 7 in every elementary tree
in GG, the algorithm guarantees that:

e [1,0] € C[i, k] if and only if there is some derivation in G where a;41 - - - ay, is the coverage
of an instance of 7.

o [1,{L}] € C[i, k] if and only if there is some derivation in G where a;11 - --ay is the left
concatenated string followed by the coverage of an instance of 7.

o [,{R}] € Cli,k] if and only if there is some derivation in G where a;4q---a; is the
coverage followed by the right concatenated string of an instance of .
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Figure 17: Sibling concatenation.

A
A +A A
a .- ak a ...a.A* a
j+1 i+1 ) i+1 %

Figure 18: left concatenation.

Figure 19: right concatenation.

e [11,{L,R}] € C[i, k] if and only if there is some derivation in (¢ where a;41 - - -ay is the left
concatenated string followed by the coverage followed by the right concatenated string of
an instance of 7.

The process starts by placing each foot node and each frontier node that is labeled with
the empty string in every cell C[i,i]. This signifies that they each cover the empty string
at all positions. The initialization also puts each terminal node 7 in every cell C[i,i + 1]
where 1 is labeled a;y1. The algorithm then considers all possible ways of combining matched
substrings into longer matched substrings—it fills the upper diagonal portion of the array C[i, k]
(0 < i <k < n) for increasing values of k — 1.

Two observations are central to the efficiency of this process. Since every auxiliary tree
(elementary and derived) in LCFG is either a left or right auxiliary tree, the substring matched
by a tree is always a contiguous string. Further, when matched substrings are combined, one
only has to consider adjacent substrings. (In LTAG, a tree with a foot can match a pair of
strings that are not contiguous, one left of the foot and one right of the foot.)

There are three situations where combination of matched substrings is possible: sibling
concatenation, left concatenation, and right concatenation.

As illustrated in Figure 17, sibling concatenation combines the substrings matched by two
sibling nodes into a substring matched by their parent. In particular, suppose that there is
a node 7y (labeled B in Figure 17) with two children 7; (labeled A) and 7, (labeled A’). If
[7717 {LvR}] € C[lvj] and [7727 {LvR}] € C[J? k] then [7707®] € C[lvk]

left concatenation (see Figure 18) combines the substring matched by a left auxiliary tree
with the substring matched by a node the auxiliary tree can adjoin on. Right concatenation
(see Figure 19) is analogous.

The recognizer (see Figure 20) is written in two parts: a main procedure and a subprocedure
Add(n, code, i,k) which adds the pair [7, code] into C[i, k].

The main procedure repeatedly scans the array ', building up longer and longer matched
substrings until it determines whether any S-rooted derived tree matches the entire input. The
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Procedure Recognize
begin
;; foot node and empty node initialization (C[z,1])
fore=0ton
for all foot nodes ¢ in A; Add(¢,0,1,7)
for all nodes i in AU I where Label(n) = ¢; Add(n,0,1,1)
;; terminal node initialization (C[¢, ¢4 1])
fore=0ton—1
for all nodes i in AU I where Label() = a;41; Add(n,0,4,i+ 1)
;7 induction (C[i, k] = C[i, j] + C[7, k])
ford=2ton
fore=0ton—d
set k=14+4d
for j=1tok
;; sibling concatenation
if [n,{L,R}] € Ci,j] and [Sibling(n),{L, R}] € C[j, k]; Add(Parent(n), .7, k)
;; left concatenation
if [p,{L, R}] € C[i,j] and [, code] € C[j, k] and L ¢ code and Ladjoinable(p, n);
Add(n, L U code, i, k)
;; right concatenation
if [, code] € C[i, j] and [p,{L,R}] € C[j,k] and R ¢ code and Radjoinable(p, n);
Add(n, RU code, i, k)
for each node p such that IsInitialRoot(p) and Label(p) = 5;
If [p,{L,R}] € C[0,n]; return acceptance
end

Procedure Add(n, code,i, k)
begin
if [17, code] & C[i, k;

Cli, k] :== C[i, k] U [, code]
;; single child parent propagation
if code = {L, R} and FirstChild(Parent(n)) = n and Sibling(n) = L; Add(Parent(n),0,i, k)
;; substitution
if code = {L, R}; for each node ¢ such that Substitutable(n, ¢); Add(¢,0,,k)
;; allowing skipping left adjunction
if L & code; Add(n, L U code, i, k)
;; allowing skipping right adjunction
if R ¢ code; Add(n, RU code, i, k)

end

Figure 20: A CKY-style recognizer for LCFG.
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purpose of the codes ({L, R} etc.) is to insure that left and right adjunction can each be applied
at most once on a node. The procedure could easily be modified to account for other constraints
on the way derivation should proceed such as those suggested for LTAGs [12].

The procedure Add puts a pair into the array C'. If the pair is already present, noth-
ing is done. However, if it is new, it is added to €' and other pairs may be added as well.
These correspond to situations where information is propagated without increasing the length
of the matched string—i.e., when a node is the only child of its parent, when adjunction is not
performed, and when substitution occurs.

The O(n?®) complexity of the recognizer follows from the three nested induction loops on d,
i and j. (Although the procedure Add is defined recursively, the number of pairs added to C'is
bounded by a constant that is independent of sentence length.)

The algorithm does not depend on the fact that LCFG is lexicalized—it would work equally
well if were not lexicalized.

By recording how each pair was introduced in each cell of the array C, one can extend the
recognizer to produce all derivations of the input.
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6 An Earley-Style Cubic-Time Parser For LCFG

By combining top-down prediction as in Earley’s algorithm for parsing CFGs [2] with bottom-up
recognition as in the last section, one can obtain a more efficient left-to-right parsing algorithm
for LCFG that maintains the valid prefix property and requires O(n?) time in the worst case.
The algorithm is a general recognizer for LCFGs, which requires no condition on the grammar.
It is particularly interesting in light of the fact that the best known parser for LTAG that
maintains the valid prefix property requires O(n%)-time in the worst case [8] versus only O(n°)
for LTAG parsers that do not maintain the valid prefix property.

The algorithm collects states into a set called the chart C. A state is a 4-tuple, [n, pos, i, j],
where: 7 is a node in an elementary tree; pos € {la,lb,ra,rb} is a position as described below;
and 0 <7 < j < n are integers ranging over positions in the input string.

During parsing, elementary trees are traversed in a top-down, left-to-right manner that
visits the frontier nodes in left-to-right order. The position codes are used to represent the
state of this traversal. In diagrams the positions are indicated by placing a dot either: left and
above la, left and below [b, right and below rb, or right and above ra the node. As illustrated
in Figure 21, the traversal begins left and above the root node and ends right and above the
root node.

In a manner analogous to dotted rules for CFG as defined by Earley [1], being at a particular
position with regard to a particular node, divides the tree containing the node into two parts:
a left context consisting of nodes that have been already been traversed and a right context that
still needs to be traversed. The situation where one is la a node is illustrated in Figure 22.

The indices ¢, j record the portion of the input string which is the left context. (The fact that
LCFG forbids wrapping auxiliary trees guarantees that a pair of indices is always sufficient for
representing the left context.) As traversal proceeds, the left context grows larger and larger.
In particular, for every node 7 in every elementary tree in &, the algorithm guarantees the
following.

s

F ' GH I

Figure 21: left to right tree traversal

Left context, Right context
already traversed to be traversed.

Figure 22: Left and right contexts of a node and position.
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[1,la,i,j] € C if and only if there is some derivation in G where ay - --a; is the far left
context of an instance of  and a;41 - - -@; is the basic left context of the instance of 5 (see
Figure 16).

e [1,0b,1,j] € C if and only if there is some derivation in G where ay - --a; is the far left
context of an instance of 7 and ;41 ---a; is the basic left context followed by the left
concatenated string of the instance of .

e [1,1rb,i,j] € C if and only if there is some derivation in G where aq ---a; is the far left
context of an instance of 7 and ;41 ---a; is the basic left context followed by the left
concatenated string followed by the coverage of the instance of 7.

e [1,ra,i,j] € C if and only if there is some derivation in G where ay ---a; is the far left
context of an instance of 7 and ;41 ---a; is the basic left context followed by the left
concatenated string followed by the coverage followed by the right concatenated string of
the instance of 7.

Figure 23 depicts the recognition algorithm as a set of production rules. The first rule (1)
initializes the chart by adding all states of the form [, la,0,0], where 7 is the root of an initial
tree and Label(n) = . As illustrated below, the initial states encode the fact that any valid
derivation must start from an S-type initial tree.

S

AN

[0,0]

The addition of a new state to the chart C, can trigger the addition of other states as
specified by the productions in Figure 23. Computation proceeds with the introduction of more
and more states until no more rules can be fired. The last rule (16) specifies that the input is
recognized if and only if the final chart contains a state of the form [, ra,0, ], where 7 is the
root of an initial tree and Label(n) = 5.

The traversal rules in Figure 23 control the left-to-right traversal of elementary trees. The
scanning, and substitution rules recognize substitutions of trees and are similar to the steps
found in Earley’s parser for CFGs [2]. The left and right adjunction rules recognize the adjunc-
tion of left and right auxiliary trees. These 14 rules are discussed in detail below.

The traversal rules (2-4) move from node to node in initial trees as indicated by the arrows
in Figure 21.

The left adjunction rules recognize left adjunction and move from position la to [b. As
indicated pictorially below, rule (5) predicts the presence of left auxiliary trees. It does this top
down taking account of the left context.
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Initialization
(1) IsInitialRoot(n) A Label(n) = 5
Traversal
(2) [1,0b,%,7] € C A FirstChild(n) # L
(3) [, ra,t,j] € C ASibling(n) # L
(4) (1, ra, 1, j] € C ASibling(n) = L A Parent(n) # L
Left Adjunction
(5) [1,la,i,j] € C A Ladjoinable(p, )
(6) [n,la,i,j]€C
(7) [n,la,i,j] € C Np,ra,j, k] € C A Ladjoinable(p, n)
Scanning
(8) [n,1b,1, 7] € C A Label(n) = a;41
(9) [1,1b,1,j] € C A Label(n) = €
(10) [Foot(p), b, 1,5] € C
Substitution
(11) [1,1b,1, j] € C A Substitutable(p, n)

(12) [n,1b,7,5] € C A [p,ra,j, k] € C A Substitutable(p, n)

Right Adjunction
(13) [17,7b, 1, j] € C A Radjoinable(p, 1)
(14) [ 10,15 € C
(15) [n,rb,i,j] € C AN[p,ra,j,k] € C A Radjoinable(p, )

Final Recognition

(16) [1,7a,0,n] € C A IsInitialRoot(n)

!

!

!

!

!

!
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[7,1a,0,0] € C

[FirstChild(n),la,1,j] € C
[Sibling(n),la,i,j] € C
[Parent(n),rb,i,5] € C

[p,la,j,jl€C
[n,1b,i,5] € C
[n,0b,i,k] € C

[n,70,i,j+ 1] €C
[n,7b,i,5] € C
[Foot(p), b, i, 5] € C

[p,la,j,jl€C
[n,70,i,k] € C

[p,la,j,jl€C
[n,ra,i,j] € C

[n,ra,i,k] €C

Acceptance

Figure 23: An Earley-style recognizer for LCFG, expressed using production rules.

Rule (6) considers the possibility that left adjunction does not occur.

LN T LN

[i.] [i.]]

Rule (7) recognizes the adjunction of a left auxiliary tree. It is a bottom-up step, which

combines a fully recognized left auxiliary tree with a partially recognized tree.

N A

[i.]] i,k

[i,K]
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The scanning rules recognize the coverage of nodes and move from position (b to rb. The
first two rules (8 & 9) match terminal nodes against elements of the input string.

INTLN NN

[I,J] [I,J+1] [i.]] [i.]

Rule (10) encodes the fact that one can move directly from the position /b a foot to rb the
foot, since by the definition of cover, the foot of an auxiliary tree never covers anything.

The substitution rules recognize substitution and also move from position b to rb. The
substitution prediction rule (11) predicts in a top-down fashion initial trees to be substituted.
It predicts a substitution only if an appropriate left context has been scanned.

A A
-A
[i.d] 1]
The substitution completion rule (12) recognizes a completed substitution. It is a bottom-
up step that concatenates the boundaries of a fully recognized initial tree with a partially
recognized tree.

A
+ —>

A A-
[i.d] [i.K [i.K

The right adjunction rules are analogous to the left adjunction rules. They recognize right
adjunction and move from position rb to ra. Rule (13) predicts right adjunction.

A
BAN
A*
[i.J] [i.J]
Rule (14) considers the possibility of no right adjunction.
—
[i.j] [i.4]

Rule (15) recognizes right adjunction.

[i.] [i.K] [i,K]

The algorithm takes in the worst case O(n?) time and O(n?) space. The worst case com-
plexity comes from the left and right completion steps. An intuition of the validity of this result
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[n,la,i,j] = [n,1b,i,5] by rule (6)if —=3p | Ladjoinable(p, n)

[7,1b,1,j] = [n,7rb,i,7] by rule (9)if  Label(n) =

[¢,1b,1,7] = [¢,7rb,4,7] by rule (10)if 3Jp | Foot(p) =¢p # L

[n,1b,1,j] = [p,la, i, j] by rule (2) if  FirstChild(n) = p # L

[n,7b,1,j] = [n, m,z,]] by rule (14) if —3p | Radjoinable(p, n)

[n,7a,i,j] = [p,la,i,j] by rule (3)if  Sibling(n) =p # L

[n,7a,i,j] = [p,rb,t,7] by rule (4)if  Sibling(n) = L A Parent(n) =pu # L

Figure 24: Fquivalent states.

can be obtained by observing that these steps may be applied at most n® times since there are
at most n® instances of states (corresponding to the possible ranges of the indices i, 5, k).

As stated in Figure 23, the algorithm is merely a recognizer. It can be converted to a parser
by keeping track of the reasons why states are added to the chart C. In this regard, it should be
noted that the algorithm always looks for left adjunction before looking for right adjunction.
This is unavoidable due to the left-to-right nature of the algorithm. However, both orders of
doing adjunction can be recovered when retrieving the derivations corresponding to a completed
chart.

For the sake of simplicity, it was assumed above that there are no constraints on adjunction.
However, the algorithm can easily be extended to handle such constraints. It can also be
extended to handle the alternative definition of TAG derivation found in [12].

6.1 Efficiency Improvements To the Earley-Style Parser

When implementing the algorithm above, two steps should be taken to improve the efficiency
of the result: grammar pruning and equivalent state merging.

The top-down prediction part of the algorithm does not take full advantage of the fact that
the grammar is lexicalized. For instance, it creates initial states for every initial tree whose root
is labeled § whether or not the anchor of the rule appears in the input. For efficiency sake, the
prediction of an elementary tree at position j (by rules 5, 11, & 13) should be prevented if the
anchor of the ruled does not appear in a;4q - - - a,[10].

A number of the rules in Figure 23 (in particular, 2, 3, 4, 9, and 10) merely move from state
to state without changing the left context ¢, 7. These rules reflect facts about the grammar and
the traversal and do not refer to the input. These rules can be precompiled out of the algorithm
by viewing certain states as equivalent. During parsing one then skips directly from the first
to the last state in a set of equivalent states without going through the normal rule application
process and enters only the last state in the chart.

Figure 24 indicates which states are equivalent. Merging these states eliminates approxi-
mately 3/4 of the possible states in the chart C. Eliminating the rules that are no longer needed
eliminates 1/3 of the rules in Figure 23.

Each of the equivalences in Figure 24 equates adjacent states. Occasionally, long chains of
equivalent states are possible. Of particular interest are the following. If p is the root of a right
auxiliary tree then [p,la,,j] = [Foot(p),ra,,7]. This is true because the foot does not cover
anything, and if there is any structure left of the foot, it must all match the empty string and
therefore must match against any input. Further, adjunction cannot apply anywhere on or left
of the foot.

If ¢ is the foot of a left auxiliary tree then [¢,la,t, j] = [Root(¢),ra,i,j]. This is true
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because the foot does not cover anything, and if there is any structure right of the foot, it must
all match the empty string and therefore must match against any input. Further, adjunction
cannot apply anywhere on or right of the foot.

7 Conclusion

The preceding discussion presents lexicalized context-free grammar (LCFG) from the perspec-
tive of its ability to lexicalize CFG while preserving the trees produced. The importance of
this is that heretofore there was no O(n?)-time parsable formalism that was known to lexicalize
CFG.

It is interesting to consider whether there are formalisms that are even more limited than
LCFG that still lexicalize CFG. For instance, even if LCFG were limited to allowing only right
(or only left) auxiliary trees, lexicalization would still be possible. It is an open question whether
some even greater limitation might be possible.

The preceding also presents a constructive procedure for converting CFGs into LCFGs. If
extended as discussed in Section 4.1, this procedure can produce a compact LCFG corresponding
to a CFG. If you are starting from a CFG G that you feel is fully satisfactory and wish to
lexicalize G, the lexicalization procedure should be very effective.

The last section presents an Earley-style parser for LCFG that achieves O(n®) worst-case
time bounds. Using this parser, it is possible to parse LCFGs very efficiently. In particular,
it should often be possible to parse using an LCFG derived by lexicalizing a CFG significantly
more quickly than one can parse using the original CFG.

It is interesting to note that there is an entirely different perspective from which to view
LCFG. LCFG is a restricted form of lexicalized tree adjoining grammar (LTAG). A primary
virtue of LTAG is that it supports linguistic analyses that are significantly more elegant than
those that can be supported by CFG. However, this elegance comes at a significant price-LTAG
requires O(n®)-time to parse.

The restrictions on LCFG allow LCFG to be parsed in O(n?)-time. However, rather sur-
prisingly, in practice the restrictions do not appear to significantly limit the elegance of analysis
being obtained by means of LTAG. In fact, the original motivation behind the development of
LCFG was the observation that the natural-language grammars being currently developed use
LTAG only use some of the capabilities provided by LTAG. The initial design goal of LCFG
was to support just the capabilities that people were using without incurring computational
overhead for capabilities that were not being used.

To take advantage of the features of LCFG that go beyond merely lexicalizing CFG, one has
to hand craft an LCFG grammar. In particular, it is important to realize that the goal of the
lexicalization procedure is to lexicalize a CFG. The procedure does not improve the elegance of
the analyses provided by a CFG—it does not change them in any way. Rather, it allows you
to obtain the same analyses faster.
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