Mitsubishi Electric Research Laboratories

Technical Report 93-17 August, 1993

Some Useful Lisp Algorithms: Part 2

by

Richard C. Waters

Abstract

This technical report gathers together three papers that were written during
1992 and 1993 and submitted for publication in ACM Lisp Pointers.

Chapter 1 “Using the New Common Lisp Pretty Printer” explains how the pretty
printing facilities that have been adopted as part of the forthcoming Common Lisp
standard can be used to gain detailed control over the printing of lists. As an
example, it shows how the pretty printer can be used to print a subset of Lisp as
Pascal.

Chapter 2 “Macroexpand-All: An Example of a Simple Lisp Code Walker”
presents a function macroexpand-all for expanding all the macro calls in a Lisp ex-
pression. This is useful when debugging macros and can be helpful as a subroutine
when writing complex macros. In addition, the chapter serves as an introduction to
code walkers—the general class of programs of which macroexpand-all is an exam-
ple. Code walkers are important because they are a vital part of the foundation of
many Lisp programming tools and macro packages.

Chapter 3 “To NReverse When Consing a List or By Pointer Manipulation, To
Avoid It; That Is the Question” discusses a question that Lisp programmers have
argued about for decades. When creating an ordered list of elements it is often
convenient to push the items onto the list one at a time and then call nreverse to
put resulting list in the correct order. By writing more complex code, you can enter
the elements in the list in the correct order in the first place. It seems that this
latter approach should be better since it avoids calling nreverse, but is it?

Submitted to ACM Lisp Pointers.

201 Broadway
Cambridge Massachusetts 02139

Publication History:-
1. First printing, TR 92-17, August 1993

2. Chapter 1 published as “Using the New Common Lisp Pretty Printer” ACM Lisp Pointers,
5(2):27-34, April 1992.

Copyright (© Mitsubishi Electric Research Laboratories, 1991
201 Broadway; Cambridge Massachusetts 02139

This work may not be copied or reproduced in whole or in part for any commercial purpose.
Permission to copy in whole or in part without payment of fee is granted for nonprofit ed-
ucational and research purposes provided that all such whole or partial copies include the
following: a notice that such copying is by permission of Mitsubishi Electric Research Lab-
oratories of Cambridge, Massachusetts; an acknowledgment of the authors and individual
contributions to the work; and all applicable portions of the copyright notice. Copying,
reproduction, or republishing for any other purpose shall require a license with payment of
fee to Mitsubishi Flectric Research Laboratories. All rights reserved.

Lisp Algorithms

1. Using the New Common Lisp Pretty Printer

Richard C. Waters

Although not part of the initial definition
of the language, pretty printing has been an
important feature of Lisp programming envi-
ronments for twenty years or more [1]. By the
time Common Lisp was being defined, the im-
portance of pretty printing was clear enough
that pretty printing was made a formal part of
the language [2]. However, little was done be-
yond recognizing the least common denomina-
tor of the pretty printing facilities available at
the time—[2] specifies how pretty printing can
be turned on and off, but says very little else.
In particular, no provision was made for allow-
ing the user to control what the pretty printer
does.

Since the late 1970s, efficient pretty printers
that allow extensive user control over the for-
mat of the output produced have been a par-
ticular interest of mine. In 1989, my XP pretty
printer [4] was adopted as part of the proposed
Common Lisp standard [5]. This adds a num-
ber of very useful facilities to Common Lisp,
however, some study and experimentation on
the part of the user is required to make the
best use of these facilities.

The purpose of this short paper is to show
how the user format-control facilities provided
by the new Common Lisp pretty printer can be
used to advantage. It is intended as an exten-
sion to the documentation in [5], rather than a
replacement for it. To make the best use of this
article, it is advisable to read [5] and obtain a
copy of the new Common Lisp pretty printer as
outlined at the end of this article, so that you
can play with the examples.

Printing Lisp as Pascal

As a convenient context for discussing the
format-control facilities provided by the new
Common Lisp pretty printer, this article uses
the problem of displaying Lisp code using Pas-
cal syntax. In particular, the article shows how
the pretty printer can be used to print a sim-
ple mathematical subset of Lisp as Pascal. For
example, the following Lisp function definition

(defun sqt (n &aux sqt)
(declare (float n) (float sqt))
(setq sqt 1.0)
(loop (when (< (abs (- (* sqt sqt) n))
1.0E-4)
(return nil))
(setq sqt
(/ (+ sqt (/ n sqt)) 2.0)))
sqt)

is printed as shown below.

function Sqt (N: Real): Real;
begin
Sqt := 1.0;
while not (Abs(Sqt*Sqt-N) < 1.0E-4) do
Sqt := (Sqt+N/Sqt)/2.0
end

The Lisp-as-Pascal printing system is best
viewed as a means for presenting the pretty
printing facilities, rather than any kind of se-
rious attempt at program translation. How-
ever, it is worthy of note that the system is
not totally contrived. A similar system was
used as part of the Knowledge-Based Editor in
Emacs [3] to display a Lisp-like internal repre-
sentation as Ada code.

Figures 1-4 contain definitions that cause

(in-package "USER")
(defvar *PD* (copy-pprint-dispatch))
(proclaim ’(special *B*))

(defun pascal-write (sexpr &rest args)
(et ((*B* 0))
(apply #’write sexpr :pretty t
:pprint-dispatch *PD* args)))

(defun pr-string (s string)
(setq string (string string))
(write-char #\’ s)
(dotimes (i (length string))
(let ((char (aref string 1i)))
(write-char char s)
(when (char= char #\’)
(write—char #\’ s))))
(write-char #\’ s))

Figure 1: Code for printing atoms.

the pretty printer to print Lisp as Pascal. The
pretty printer operates under the control of a
dispatch table that specifies how various kinds
of objects should be printed. The second form
in Figure 1 defines a variable #PD* and initializes
it with a copy of the default pretty printing dis-
patch table. The function pascal-write prints
a Lisp expression as Pascal by triggering pretty
printing and using the dispatch table *PD*. (As
discussed in conjunction with Figure 2, the vari-
able *B* is used to control the printing of paren-
theses in Pascal expressions.)

The function pr-string prints strings as re-
quired by Pascal.

’Bob’’s house’
)Say IIHiII)

"Bob’s house"
llsay \IIHi\IIII

prints as
prints as

The top two forms on the right of Figure 1
cause pr-string to be used for printing strings
and characters. (The first line of pr-string is
included so that pr-string can be used to print
character objects in addition to strings.)

#\s prints as ’s’

The third form on the right of Figure 1 spec-
ifies how variables and function names should
be printed in Pascal. In particular, it speci-
fies that whenever an object of type symbol is
encountered, it should be pretty printed using
the indicated function. This function capital-
izes the first letter of each word and removes
any hyphens.

R.C. Waters

(set-pprint-dispatch ’string
#’pr-string O *PD*)

(set-pprint-dispatch ’character
#’pr-string O *PD*)

(set-pprint-dispatch ’symbol
#’(lambda (s id)
(write-string
(remove #\-
(string-capitalize
(string id)))
s))
0 *PD*)

(set-pprint-dispatch
’(and rational (not integer))
#’(lambda (s n)
(write (float n) :stream s))
0 *PD#)

FirstNum
BreakLevel2

first-num
break-level-2

prints as
prints as

(As with most of the code being presented here,
this does not guarantee that every relevant Lisp
construct will be translated into a valid Pascal
construct. However, it is sufficient to trans-
late Lisp constructs that are intended to be dis-
played as Pascal into valid Pascal.)

A key thing to notice is that the symbol
printing function uses write-string to print the
string it computes, rather than princ. The rea-
son for this is that princ applies pretty printing
dispatching to its argument while write-string
does not. If the function princ were used in the
symbol printing function, the symbol first-num
would be printed as ’FirstNum’, because the
string created by the symbol printing function
would be printed as specified by the pretty
printing dispatch entry for strings.

The last form in Figure 1 specifies how to
print rational numbers. Nothing special has to
be said about integers and floating point num-
bers, because the standard Lisp printer prints
them in a way that is compatible with Pascal.

Printing Expressions

Figure 2 shows the pretty printing control
code that specifies how expressions should be
printed. The most interesting aspect of this
code is the way it handles the printing of paren-

Lisp Algorithms

(defvar *unary*
)((+ ngn 2) (_ n_n 2) (not “"not " 4)))

(defun unary-p (x)
(and (consp x)
(assoc (car x) *unaryx*)
(= (length x) 2)))

(set-pprint-dispatch ’(satisfies unary-p)
#’(lambda (s list)
(let* ((info (cdr (assoc (car list)
unary)))
(nest (<= (cadr info) #*Bx*))
(#B* (cadr info)))
(when nest (write-char #\(s))
(write-string (car info) s)
(write (cadr list) :stream s)
(when nest (write-char #\) s))))
0 *PDx*)

(defvar *builtin*
’((atan "ArcTan") (code-char "Chr")
(log "Ln'") (oddp "0dd")
(char-code "0Ord") (truncate "Trunc")
(prinil "Write") (terpri "Writeln")))

(defun builtin-p (x)
(and (consp x)
(assoc (car x) *builtinx)))

(defun pr-arglist (s args)
(when args
(let ((xB* 0))
(format s #"":<"@{"W~", "_"}":>"
args))))

(set-pprint-dispatch ’(satisfies builtin-p)
#’(lambda (s list)
(write-string
(cadr (assoc (car list)

*builtinx))

s)
(pr-arglist s (cdr 1list)))

0 *PD*)

Figure 2: Code for printing expressions.

theses. At each moment, the variable *B* con-
tains the binding strength of the current con-
text on a scale of 0 (weakest) to 4 (strongest).
Unless the binding strength of an operator is
stronger than the surrounding context, paren-
theses are printed to specify the proper nesting
of expressions.

Consider the top left of Figure 2. The vari-
able *unary* contains information about the
relationship between unary operators in Lisp
and Pascal. Fach triple contains a Lisp func-
tion, the corresponding Pascal operator, and
the binding strength of the operator in Pascal.

(defvar *bin*

)((* Mg 3) (/ n/n 3)
(mod " mod " 3)
(round " div " 3)
(and " and " 3)

(+ Hyn 2) (_ w_mn 2)
(or " or " 2)
(= "wo=_n 1)

(< W 1) (> LU 1)

(/= "wogs o 1) (<= "wog=n 1)

(>= "os=n 1) (eq "wo=n 1)

(eql " =" 1) (equal " =" 1)))

(defun bin-p (x)
(and (consp x)
(assoc (car x) *binx*)
(= (length x) 3)))

(set-pprint-dispatch
’(satisfies bin-p)
#’(lambda (s list)
(let* ((info (cdr (assoc (car list)
*bink)))
(nest (<= (cadr info) #*B*)))
(pprint-logical-block
(s (cdr list)
:prefix (if nest "(" "")
:suffix (if nest '")'" "))
(let ((*B* (1- (cadr info))))
(write (pprint-pop)
:stream s))
(pprint-newline :linear s)
(write-string (car info) s)
(let ((*B* (cadr info)))
(write (pprint-pop)
:stream s)))))
0 *PD#)

(set-pprint-dispatch ’cons
#’(lambda (s list)
(write (car list) :stream s)
(pr-arglist s (cdr 1list)))
-1 #PD%*)

The function unary-p tests whether something
is a list that is an application of a unary oper-
ator.

The printing function for unary operators
determines whether the expression should be
nested in parentheses by comparing the bind-
ing strength of the operator with the binding
strength of the surrounding context; changes
the value of *B* to reflect the binding strength
of the operator; prints parentheses if needed;
prints the appropriate Pascal operator; and calls
write to print the argument appropriately.

The top three forms on the right of Fig-

ure 2 specify how binary operators should be
handled. This is done in a way that is closely
analogous to the handling of unary operators,
however, two additional complexities have to be
handled by the binary printing function.

The left associative nature of Pascal must
be taken into account when deciding where to
place parentheses. This is done by reducing the
binding strength of the context when printing
the first argument of a binary operation.

(x (+12) 3 prints as (1+2)#*3
(x (x 12) 3) prints as 1%2%3
(1 (x 2 3)) prints as 1%(2%3)

To allow the pretty printer to adjust the
output based on the line width available, the
printing function for binary operators creates a
logical block and introduces a conditional new-
line. As discussed at length in [4, 5], logical
blocks are a central feature of the pretty print-
ing algorithm. Each logical block is printed on
a single line if possible. However, if this is not
possible, a block is broken across multiple lines
as specified by the conditional newlines within
it and appropriate indentation is inserted. For
example, the Lisp expression

(> threshold (+ new-val delta))

prints as follows if the line width is sufficient.

Threshold > NewVal+Delta

If somewhat less space is available it prints as:

Threshold
> NewVal+Delta

If even less space is available it prints as:

Threshold
> NewVal
+Delta

Logical blocks and conditional newlines al-
low a single printing function to produce aes-
thetic output for a wide range of line widths.

The bottom four forms on the left of Fig-
ure 2 support the printing of built-in functions
where the name used in Pascal is different from
the Lisp name. The most interesting thing here

R.C. Waters

is the function pr-arglist. This function prints
out zero or more arguments of a Pascal function
call. Note that nothing is printed if there are
zero arguments and *B* is set to 0 reflecting the
fact that the printing of the arguments does not
have to be sensitive to the binding strength of
the outer context.

The function pr-arglist and the printing
function for binary operators each create a logi-
cal block and specify conditional newlines. How-
ever, they do so using different forms. The
form pprint-logical-block is the most general
form for creating a logical block. It must be
used in situations where complex computation
is required to determine what should be printed
within the block. In simple situations (e.g.,
in pr-arglist) the format directive "~<... ~:>"
can be used instead. The directive "~_" is used
to specify conditional newlines within a format
string.

The last form on the right of Figure 2 sup-
ports the printing of user-defined functions and
built-in functions where the name is the same
in Lisp and Pascal (e.g., cos and round). Note
that the dispatching entry is given a priority of
-1 instead of 0 asin the other entries in Figure 2.
A different priority is required because the type
specifier associated with the entry (cons) is not
disjoint from the other type specifiers in Fig-
ure 2. A lesser priority is used so that the en-
try will act as a catch-all that only applies in
situations where no other entry applies.

As examples of the way function calls are
printed, consider the following:

(terpri) prints as Writeln
(log x) prints as Ln(X)
(my-fn a b ¢) prints as MyFn(A, B, C)

The logical block introduced by pr-arglist
causes the Lisp expression

(my-fn epsilon (+ end delta) total)

to print either as
MyFn(Epsilon, End+Delta, Total)

or

MyFn(Epsilon,
End+Delta,
Total)

depending on the space available.

Lisp Algorithms

(set-pprint-dispatch
’(cons (member setq))
#o<FTLQ{TW r=T_ CWT >
0 *PD*)

(set-pprint-dispatch
’(cons (member progn))

#""<"x"10{begin "2i"_"@{"W""; "_"} ~
“I”_end~}":>"
0 *PD*)

(defun pr-if (s list)
(let ((then (caddr 1list))
(else (cadddr list)))
(when
(and else (consp then)
(or (member (car then)
’(when unless))
(and (eq (car then) ’if)
(null (cdddr then)))))
(setq then ‘(progn ,then)))
(format s #"~@<if "W ~i~:_"3I"
then ~“_"W"@[~"I~_"3I"
else ~_"W~]":>"
(cadr list) then else)))

(set-pprint-dispatch
’(cons (member if))
#'pr—if O *PD%*)

(defun maybe-progn (list)
(if (cdr list)
‘(progn ., list)
(car list)))

(set-pprint-dispatch
’(cons (member when))
#’(lambda (s list)
(pr-if s ‘(if ,(cadr list)
, (maybe-progn
(cddr list)))))
0 *PD#)

(set-pprint-dispatch
’(cons (member unless))
#’(lambda (s list)
(pr-if s ‘(if (not ,(cadr 1list))
, (maybe-progn
(cddr list)))))
0 *PD#)

Figure 3: Code for printing simple statements.

Printing Statements

Figure 3 shows the pretty printing control
code that specifies how simple statements are
printed. The first two forms print assignment
statements and begin...end blocks. They are
specified very compactly by using the extended
form of the cons type specifier included as part
of the propsed Common Lisp standard and the
reader macro #"...", which creates a function
corresponding to a format string. Both forms
use logical blocks to control the output.

The function pr-if is used to print condi-
tional statements. Some complexity is involved,
because the function must ensure that nested
conditionals print correctly. In particular, the
expression

(if a (if b ¢) d)

must be printed as

if A then begin if B then C end else D

instead of

if A then if B then C else D

to distinguish it from

(if a (if b ¢ 4))

Checking for this problem requires pr-if to in-
spect the then clause of the conditional being
printed.

The last three forms on the right of Figure 3
specify how to print the Lisp forms when and
This is done by converting them to
equivalent ifs.

The first five forms in Figure 4 specify how
to print while and repeat loops. The primary
complexity revolves around the need to inspect
Lisp loop forms and determine what Pascal
statements should be used to represent them.
(The code shown assumes that every Lisp loop
it encounters can be displayed as either a while
or repeat loop in Pascal). An example of the
way a while loop is printed is shown at the
beginning of this paper. The following repeat
loop

unless.

(loop (setq result (* result x))
(setq count (- count 1))
(when (= count 0) (return nil)))

is printed as shown below.

repeat
Result := Result*X;
Count := Count-1

until Count = 0

(defun while-loop-p (x)
(and (consp x) (eq (car x) ’loop)
(exit-p (cadr x))))

(defun exit-p (x)
(and (consp x)
(member (car x) ’(if when))
(equal (cddr x) ’((return nil)))))

(set-pprint-dispatch
’(satisfies while-loop-p)
#’(lambda (s list)
(format s "“@<while "W ~
“:_do T2IT_"WT:>"
‘(not ,(cadadr list))
(maybe-progn (cddr 1list))))
0 *PD#)

(defun repeat-loop-p (x)
(and (consp x) (eq (car x) ’loop)
(exit-p (car (last x)))))

(set-pprint-dispatch
’(satisfies repeat-loop-p)
#’ (lambda (s list)

(format s "~@<"<repeat "2I~
"@{"”"_"W"”; ~}":> It
until “WT:>"

(butlast (cdr 1list))
(cadar (last 1list))))
0 *PD#*)

(proclaim ’(special *decls*))

(defun pr-decl (s var &rest ignore)
p 8
(declare (ignore ignore))
(format s #""W: ~W"
var (declared-type var)))

(defun declared-type (var)
(cdr (assoc
(dolist (d *decls* ’integer)
(when (member var (cdr d))
(return (car 4))))
‘((float . real)
(single-float . real)
(integer . integer)
(fixnum . integer)
(character . char)
(string-char . char)))))

R.C. Waters

(defun pr-defun (s list)
(let* ((name (cadr list))
(args (caddr list))
(body (cdddr list))
(*decls* nil)
(fn? (and (member name args)
(eq name
(car (last body)))))
(locals
(delete name
(cdr (member ’&aux args))))
(parameters
(1diff args
(member ’&aux args)))
(*¥B* 0))
(loop
(unless (eq (caar body) ’declare)
(return nil))
(setq *decls*
(append *decls* (cdar body)))
(pop body))
(pprint-logical-block (s (cdr list))
(write-string
(if fn? "function " "procedure ")
s)
(write name :stream s)
(format s #" ":<"@{~/pr-decl/~ "~
R N
parameters)
(when fn?
(format s #": ~W"
(declared-type name)))
(format s #";~:0@_")
(when locals
(format s #" var "4I"
“{":@_"/pr-decl/;"}~
“0IT:@_"
locals))
(format s #"begin ~2i~:@_~{"W""; "_"}~
“I"_end"
(if fn?
(butlast body)
body)))))

(set-pprint-dispatch
’(cons (member defun))
#’pr-defun O *PD*)

Figure 4: Code for printing loops and function definitions.

Printing Function Definitions

The remainder of Figure 4 controls the print-
ing of function definitions. The primary com-
plexity here is that parameters, local variables,
and type declarations are specified in Pascal
very differently from the way they are speci-
fied in Lisp. The function pr-defun effectively
has to parse the defun to be printed and then re-

express the information using either a procedure
or function statement in Pascal.

An interesting thing to note is the function
pr-decl. This function prints a variable fol-
lowed by its type and is used as a user-defined
format directive in pr-defun. The type to print
is determined by the function declared-type,
which looks at declaration information stored

in the variable *decl#* by pr-defun.

Lisp Algorithms

The results produced by pr-defun are illus-
trated by the first example in this paper and
the following

(defun print-exp (x i &aux count result)
(declare (integer x count result))
(setq count 1)

(setq result 1)
(loop (setq result (* result x))

(setq count (- count 1))

(when (= count 0) (return nil)))
(print result))

which is printed as shown below.

procedure PrintExp (X: Integer;

I: Integer);
var
Count: Integer;
Result: Integer;
begin
Count := I;
Result := 1;
repeat
Result := Result*X;
Count := Count-1
until Count = 0;
Print (Result)
end
Conclusion

You can get a lot of value out of the pro-
posed Common Lisp pretty printer by merely
setting *print-pretty* to t. However, this only
scratches the surface of the value that can be
obtained. The next level of use comes from
defining special pretty printing functions for
particular data structures you define. This al-
lows the pretty printer to be much more useful
during debugging. However, the usefulness of
the pretty printer is not limited to being part
of the Lisp programming environment.

An entirely new level of use comes from us-
ing the pretty printer as a component of a sys-
tem you are building, as in the example pre-
sented here. The pretty printer’s ability to tai-
lor output to fit the space available makes it
valuable in a wide variety of situations where
output is being produced. In particular, it al-
lows a modular approach to the creation of out-
put.

For example, in the code shown in Figures 1—-
4, each dispatching entry specifies how to print

a single kind of form. Except for a small amount
of contextual information (e.g., the information
required to decide where parentheses should be
printed) each entry operates on a local basis
without having to know anything about any
other form. However, because each entry spec-
ifies how the relevant form should be printed if
it will fit on one line and what should be done
if it cannot be printed on one line, the pretty
printer is able to dynamically combine the en-
tries and automatically adjust the output to fit
aesthetically in a wide range of line widths.

Obtaining the Example

The example above is written in Common
Lisp and has been tested in several different
Common Lisp implementations. The full source
is shown in Figures 1-4. In addition, the source
can be obtained over the INTERNET by using
FTP. Connect to FTP.AI.MIT.EDU (INTERNET
number 128.52.32.6). Login as “anonymous”
and copy the files shown below.

In the directory /pub/lptrs/
xpx-code.lisp
xpx-test.lisp

source code
test suite

Since the example makes use of the pretty
printing facilities in the proposed Common Lisp
standard, it requires a Common Lisp imple-
mentation that supports these facilities. If the
Common Lisp implementation you use does not
yet support these facilities, you can obtain an
implementation over the INTERNET. Connect
to FTP.AI.MIT.EDU, login as “anonymous”, and
copy the files shown below.

In the directory /pub/xp/

xp.lisp source code
xp-test.lisp test suite
xp—doc.lisp brief documentation

The contents of Figures 1-4 and the files
above are copyright 1992 by the Massachusetts
Institute of Technology, Cambridge MA. Per-
mission to use, copy, modify, and distribute
this software for any purpose and without fee
is hereby granted, provided that this copyright
and permission notice appear in all copies and
supporting documentation, and that the names

of MIT and/or the author are not used in ad-
vertising or publicity pertaining to distribution
of the software without specific, written prior
permission. MIT and the author make no rep-
resentations about the suitability of this soft-
ware for any purpose. It is provided “as is”
without express or implied warranty.

MIT and the author disclaim all warranties
with regard to this software, including all im-
plied warranties of merchantability and fitness.
In no event shall MIT or the author be liable
for any special, indirect or consequential dam-
ages or any damages whatsoever resulting from
loss of use, data or profits, whether in an action
of contract, negligence or other tortious action,
arising out of or in connection with the use or
performance of this software.

R.C. Waters

References

Goldstein L., “Pretty Printing, Converting
List to Linear Structure”, MIT/AIM-279,
February 1973.

Steele G.L.Jr., Common Lisp: the Lan-
guage, Digital Press, Maynard MA, 1984.
R.C. Waters, “The Programmer’s Appren-
tice: A Session With KBEmacs”, IEEF
Transactions on Software Engineering,
11(11):1296-1320, November 1985.

Waters R.C., XP: A Common Lisp Pretty
Printing System, MIT Al Laboratory tech-
nical memo MIT/AIM-1102a, September
1989.

Waters R.C., “Pretty Printing) in Common
Lisp: the Language, Second Edition,
748-769, Steele G.L.Jr., Digital Press,
Burlington MA, 1990.

Lisp Algorithms

2. Macroexpand-All: An Example of a Simple Lisp Code Walker

Richard C. Waters

If you like to write Lisp macros, or even just
use the macros other people write, you have
no doubt felt the desire to see what particular
macro calls expand into. The standard Com-
mon Lisp function macroexpand is very useful
in this regard; however, since it only expands
the topmost form in an expression, it does not
necessarily show you the full result of a macro
expansion.

For example, suppose that you wrote (or
have available to you) the following implemen-
tation of the standard Lisp macro cond.!

(defmacro cond (&rest clauses)
(when clauses
‘(if ,(caar clauses)
(progn ,@(cdar clauses))
(cond ,@(cdr clauses)))))

If you evaluate

(macroexpand ’(cond (a b) (c d)))

you obtain the result

(if a (progn b) (cond (c d)))

which is not as informative as you might wish,
because it does not show you the complete re-
sult that will be obtained when the nested in-
stance of cond that is created by the macro is
eventually expanded.

As shown below, it is trivial to write a pro-
gram that applies macroexpand to every sublist
in a Lisp expression.

!This is an ugly implementation of cond, because it
produces a lot of excess code. Worse, it is an erroneous
implementation of cond, because it assumes that every
clause contains at least two elements. However, it is a
convenient example for the purposes of this discussion.

(defun macroexpand-tree (tree)
(setq tree (macroexpand tree))
(if (atom tree)
tree
(mapcar #’macroexpand-tree tree)))

This can be used to show you the complete
macroexpansion of a form in many situations.
For instance,

(macroexpand-tree ’(cond (a b) (¢ d)))

yields

(if a (progn b) (if ¢ (progn d) nil))

Unfortunately, macroexpand-tree is severely
flawed, because it does not operate in the same
manner as the Common Lisp compiler and eval-
uator. In particular, while macroexpand-tree
macroexpands every sublist in a Lisp expres-
sion, the evaluator and compiler only macroex-
pand sublists that are in positions where they
can be evaluated.

For example, when it encounters the form

(mapcar #’(lambda (cond) (car cond)) list)

the compiler does not do any macroexpansion.
However, applying macroexpand-tree produces

(mapcar #’(lambda nil (car cond)) list)

since (macroexpand ’(cond)) is nil.

To macroexpand everything that should be
expanded in a Lisp expression, and nothing else,
you have to write a function that understands
which parts of which Lisp forms are evaluated
and which parts are not. A function called
macroexpand-all that does this is presented in
the next section.

10

Taken by itself, macroexpand-all is useful,
but not all that interesting. However, the way
that macroexpand-all is written is quite inter-
esting, because it is an example of an important
class of programs known as code walkers.

One of the beauties of Lisp is that every-
thing that any programming tool has to know
about the syntax of Lisp can be stated in a
couple of short paragraphs. Further, this in-
formation is built into the Lisp reader so that
nobody has to expend much effort dealing with
Lisp syntax.

In comparison to many other programming
languages, the semantics of Lisp is also very
simple, because almost everything is a mere
function call or a macro that expands into func-
tion calls. However, there is a residue of some
25 special forms each of which has its own spe-
cial semantics.?

Unfortunately, 25 is a pretty large number
when you consider that each tool that manipu-
lates programs in non-trivial ways has to have
embedded knowledge of all 25 special forms.
The way this typically comes about is that the
tool has to traverse a Lisp expression and ei-
ther change parts of it (e.g., macroexpanding
subforms or renaming variables) or collecting
information (e.g., about free variables or bound
variables). This kind of process is generally re-
ferred to as code walking.

People have attempted to implement gen-
eral code walkers that encode everything any
tool has to know about Lisp semantics (see for
example, the PCL code walker described in [1]).
However, none of the resulting code walkers
have been generally accepted as really contain-
ing everything anyone would need. As a re-
sult, the writers of Lisp programming tools and
complex macros are typically required to write
there own code walkers. The implementation
of macroexpand-all is a valuable tutorial intro-
duction to how this can be done.

?Due primarily to the urgings of Kent Pitman [2], a
key advance of Common Lisp over its predecessors (e.g.,
MacLisp) was reducing the number of special forms to
only 25 and preventing users from defining new ones.
A significant attraction of Scheme is that it goes even
farther in the direction of semantic simplification.

R.C. Waters

Macroexpand-All

Except as noted below, macroexpand-all is
addressed solely to Common Lisp as defined
in Common Lisp the Language, first edition
(CLtL1) [3], rather than the proposed standard
version described in Common Lisp the Lan-
guage, second edition (CLtL2) [4]. The deci-
sion to stick to CLtL1 was motivated by two is-
sues. First, except where noted below, moving
to CLtL2 would make macroexpand-all a bit
more complex, because there are a few more
special forms, but it would not make it any
more interesting. In addition, like many peo-
ple, I still have to work in CLtI.1 and so this is
the version of macroexpand-all I am using.

The main body of the code for macroexpand-
all is shown in Figure 5. Macroexpand-all (at
the top left of the figure) takes two arguments:
a form and an optional macro environment (i.e.,
the same kind of environment that macroexpand
takes). Macroexpand-all copies the form to be
expanded to protect the code that contains the
form from being destructively modified during
macro expansion, and then calls mexp to do the
real work. (Some implementations of Common
Lisp implement copy-tree recursively. If thisis
the case in the Lisp you use, you will have to
write an iterative implementation of copy-tree
to use in macroexpand-all or risk stack overflow
occurring.)

Mexp is the central control point of the code
walking process. It calls macroexpand-1 repeat-
edly until the form has been converted into a
use of a special form whose semantics is under-
stood by mexp or reduced to an ordinary func-
tion call or other vanilla object. Mexp then re-
curses by calling an appropriate handler as dis-
cussed shortly. (Mexp checks for special forms
each time before calling macroexpand-1, because
some implementations of Common Lisp imple-
ment some special forms as macros.)

It should be noted that while mexp is a very
simple code walker, every code walker has to
have essentially the same structure. A code
walker has to expand every macro call, because
the only way for it to understand the semantics
of a macro call is to determine what it expands

Lisp Algorithms

(in-package :mexp)
(export ’(macroexpand-all))

(defun macroexpand-all (f &optional env)
(mexp (copy-tree f) env))

(defun mexp (f env &aux (flag t) m)
(loop

(cond ((atom f)
(return f£))
((not (symbolp (car £)))
(return (all-mexp f env)))
((setq m (get (car) ’mexp))
(return (funcall m £ env)))
((not flag)
(return (funcall-mexp f env))))

(multiple-value-setq (f flag)

(macroexpand-1 f env))))

(defun all-mexp (list env)
(do ((f list (cdr £f))
(r) (cons (mexp (car f) env) r)))
((atom) (nreconc r £))))

(defun funcall-mexp (f env)
“(,(car £) ,0(all-mexp (cdr £) env)))

(defun quote-mexp (f env)
(declare (ignore env))
f)

(defun block-mexp (f env)
“(,(car 1)
,(cadr f)
,0(all-mexp (cddr f) env)))

(defun let-mexp (f env)
“(,(car 1)
, (mapcar #’(lambda (p)
(bind-mexp p env))
(cadr £))
,0(all-mexp (cddr f) env)))

(defun bind-mexp (p env)
(if (and (consp p) (comsp (cdr p)))
(1ist (car p) (mexp (cadr p) env))
p))

(defun lambda-mexp (f env)
“(,(car 1)
, (mapcar #’(lambda (p)
(arg-mexp p env))
(cadr £))
,0(all-mexp (cddr f) env)))

(defun arg-mexp (arg env)
(if (and (comsp arg) (comsp (cdr arg)))
“(,(car arg)
, (mexp (cadr arg) env)
,0(cddr arg))
arg))

(defun get-var (b)
(if (consp b) (car b) b))

(defun get-val (b)
(eval (if (comsp b) (cadr b) nil)))

(defun compiler-let-mexp (f env)
(progv (mapcar #’get-var (cadr f))
(mapcar #’get-val (cadr f))

(mexp
(if (null (cdddr £))
(caddr f)
‘(let nil ,@(cddr £)))
env)))

(defun macrolet-mexp (f env)
(with-env env ‘(macrolet ,(cadr f))

#’mexp
(if (null (cdddr £))
(caddr f)

‘(let nil ,@(cddr £)))))

(defun flet-mexp (f env)
“(flet
, (all-lambda-mexp (cadr f) env)
,0(with—-env env ‘(flet ,(cadr f))
#’all-mexp
(cddr £))))

(defun labels-mexp (f env)
(with-env env ‘(labels ,(cadr f))
#’labels-mexp-2 f))

(defun labels-mexp-2 (f env)
‘(labels
, (all-lambda-mexp (cadr f) env)
,0(all-mexp (cddr f) env)))

(defun all-lambda-mexp (list env)
(mapcar #’(lambda (f)
(lambda-mexp £ env))
list))

(mapc #’(lambda (x)
(setf (get (car x) ’mexp)
(eval (cadr x))))

> ((block #’block-mexp)
(catch #’funcall-mexp)
(compiler-let #’compiler-let-mexp)
(declare #’quote-mexp)
(eval-when #’block-mexp)
(flet #’flet-mexp)
(function #’funcall-mexp)
(go #’quote-mexp)
(if #’funcall-mexp)
(labels #’labels-mexp)
(lambda #’lambda-mexp)
(1let #’let-mexp)
(let* #’let-mexp)
(macrolet #’macrolet—mexp)

(multiple-value-call #’funcall-mexp)
(multiple-value-progl #’funcall-mexp)

(progn #’funcall-mexp)
(progv #’funcall-mexp)
(quote #’quote-mexp)
(return-from #’block-mexp)
(setq #’funcall-mexp)
(tagbody #’funcall-mexp)
(the #’block-mexp)
(throw #’funcall-mexp)

(unwind-protect #’funcall-mexp)))

Figure 5: The main body of the code for macroexpand-all.

11

12

into. When confronted by a form that is not a
macro call, any code walker has to have special-
purpose handlers for each kind of form since the
various special forms are totally idiosyncratic.

As summarized in Table 5-1 on page 57 of
[3], CLtL1 has 24 special forms. However, from
the perspective of tools that operate on pro-
grams lambda should be added to this list, since
it can appear in code and certainly has special
semantics. Mexp maintains an index between
special forms and their handlers by storing the
handler functions as properties of the special
form symbols. This is set up by the expression
in the lower right of Figure 5. The remainder
of the figure shows the handlers themselves.

Since mexp primarily only cares about what
parts of a special form macroexpansion should
be applied to and what parts it should not be
applied to, most of the handlers are very sim-
ple, and many of the special forms are treated
in the same way. For example, the handler
funcall-mexp specifies that everything except
the first element in a form should be macroex-
panded. For the purposes of mexp this is appro-
priate for handling ordinary function calls and
11 of the 25 special forms.

A code walker that is more complex than
mexp will require more complex handlers that
keep track of additional information such as
what variables are bound. However, the han-
dlers will be basically upward compatible from
the ones shown here.

There are only three classes of mexp’s han-
dlers that are at all complex. The handlers
for forms that bind variables (i.e., let{*} and
lambda) are a bit complex due to the somewhat
complex syntax that is used to specify variables
and values for them.

The handler for compiler-let is complex
because it must cause a change in the vari-
able bindings that are in effect while macro
expansion proceeds. Conveniently, only spe-
cial variables are involved, so the change can
be straightforwardly made by using progv to
change the evaluation environment before re-
cursing into the body of the compiler-let.

The handlers for flet, labels, and macrolet
are by far the most interesting. They are com-

R.C. Waters

plicated because they potentially change the
environment that controls the way macros ex-
pand. Flet and labels can shadow a macro
definition with a function definition. Macrolet
can introduce a new macro definition.

For example, consider the form

(flet ((cond (x) (cond (x (1+ x)))))
(cond (car y)))

Assuming the definition of cond used above, this
should macroexpand into

(flet ((cond (x)
(if x (progn (1+ x)) nil)))
(cond (car y)))

The use of cond in the body of the local func-
tion definition is an instance of the macro cond
defined above, but the instance of cond in the
body of the flet is an instance of the locally
defined function instead.

A similar situation arises with macrolet.

(macrolet ((cond (x) (cond (x ‘(1+ ,x)))))
(cond (car y)))

macroexpands into
(1+ (car y))

The macrolet form itself does not need to be re-
tained once macro expansion has occurred. The
information it specifies is only relevant to the
expansion of macro calls syntactically nested
within it and these calls have all been elimi-
nated by expanding them.

The handlers for flet, labels, and macrolet
are each implemented using a function called
with-env, which takes four arguments, a macro
environment, a form that potentially modifies
this environment, a function fn, and an argu-
ment x to apply the function to. With-env up-
dates the macro environment as specified by the
form and then applies £n to x and the modified
environment. With-env returns whatever fn re-
turns.

For example, flet-mexp uses all-lambda-
mexp, which calls lambda-mexp, to macroexpand
the local function definitions. It then uses with-
env to create the altered macro environment

Lisp Algorithms

that corresponds to the flet and uses all-mexp
to macroexpand the body of the flet in this
new environment. Labels-mexp operates the
same way as flet-mexp except that it uses the
altered environment when macroexpanding the
local function definitions.

Before discussing how with-env works, it is
useful to note that all the code in Figure 5 is
portable Common lisp. Unfortunately, this is
not true for with-env.

Evaluation and Macro Environments

Lisp evaluation is controlled by an evalu-
ation environment that specifies the values of
variables and what functions and macros sym-
bols refer to. In order not to over constrain im-
plementors, Common Lisp documentation says
almost nothing about this environment. CLtL1
merely describes a couple of situations where
evaluation environments appear. In particu-
lar, if an *evalhook* function is specified, then
whenever an attempt is made to evaluate some-
thing, the *evalhook* function will be called
and passed the form to evaluate and an appro-
priate evaluation environment. Just about the
only thing that this environment can be used
for is as an argument to the function evalhook,
which can be used to resume evaluation of the
form passed to the *evalhook* function. (Step-
ping and tracing tools can be implemented us-
ing *Evalhook* functions and evalhook.)

The expansion of macros is controlled by a
macro environment that specifies which sym-
bols refer to macros and which do not. As
above, Common Lisp documentation says al-
most nothing about this environment. CLtL1
merely describes two situations where macro
environments appear. When a macro function
(a function that implements a macro) is called,
it is passed the macro environment that is ap-
propriate for the place in the source program
where the macro call appeared. The function
macroexpand can be passed a macro environ-
ment that specifies the context that should be
used when expanding the specified form. This
is needed so that a macro (e.g., setf) can call
macroexpand on part of its argument and get the
results that are appropriate for the place where

13

the original macro call appeared.

With-env has to modify the macro environ-
ment given to it to reflect the changes implied
by the specified form. This is difficult to do,
because CLtL1 does not provide any functions
for creating or inspecting either evaluation or
macro environments. All that it provides is a
few obscure functions that are not intended to
be at all relevant to our task.

Solving the Puzzle

For those that delight in getting Lisp to do
things that the builders of the language never
dreamed that you would want to do, success-
fully extending a macro environment is a puz-
zle much too interesting to pass up. The key to
solving the puzzle is realizing that whatever a
macro environment is, the Lisp evaluator suc-
ceeds in extending it appropriately whenever it
encounters an flet, labels, or macrolet. We
can get the evaluator to make the modification
we want, by simply passing it the form we have.

Unfortunately, there is a problem with this
simple idea.
expression creating appropriate evaluation and
macro environments, but while you can specify
an initial execution environment with evalhook,

The evaluator descends into an

there is no way to specify an initial macro en-
vironment. In contrast, you can specify an
initial macro environment to macroexpand, but
macroexpand does not descend into an expres-
sion and therefore does not lead to the con-
struction of an extended macro environment.
As a result, while it is easy to get the evaluator
to extend an evaluation environment, it is not
clear how to get it to extend a macro environ-
ment for us.

The function evalhook can be used to both
prime the evaluator with an initial evaluation
environment and to access an extended evalu-
ation environment. For example, suppose you
have an evaluation environment FE.

(evalhook ’(macrolet ((h (a) ‘(1+ ,a))) t)
#’ (lambda (x env)
(print env)
(eval x))
nil

E)

14

(defmacro grab-env (fn x
&environment env)
¢? (funcall fn x env))

R.C. Waters

(defun aug-env (env form fn x)
(evalhook ‘(,@ form (grab-env ,fn ,x))
nil nil env))

Figure 6: Manipulating execution and macro environments.

#+(or :SYMBOLICS :AKCL :CORAL :FRANZ-INC)
(defun with-env (env form fn x)
(aug-env (convert-env env) form fn x))

#+(or :SYMBOLICS :AKCL)
(defun convert-env (env)
env)

#+:CORAL
(defun convert-env (env)
(list nil env nil nil nil nil))

#+:FRANZ-INC
(defun convert-env (env)
(list nil env nil nil))

Figure 7: Extending macro environments that are similar to execution environments.

shows you the result of extending F with the
information in the macrolet. Exactly what this
environment is like differs radically from one
Common Lisp implementation to another. (If
you want to type the expression above at top
level, you can use the value nil for FE, which
stands for the top-level environment.)

What we need is some way to convert eval-
uation environments into macro environments
and vice versa. The first of these conversions
can be done straightforwardly with a macro, by
utilizing an &environment argument. In partic-
ular, the macro grab-env in Figure 6 applies a
function to an argument x and the macro envi-
ronment corresponding to the evaluation envi-
ronment in effect at the place where the macro
call appears. It then returns whatever the func-
tion returns. For example, the expression

(grab-env #,#’ (lambda (x env) (print env))
nil)

will show you the macro environment corre-
sponding to the place where the expression ap-
pears. If you type this at top level you will see
the top-level macro environment. If you type it
nested in a form you will see a more complex
macro environment.

You can use evalhook and grab—env together
to access the macro environment that corre-
sponds to extending an evaluation environment.

(evalhook ’(macrolet ((h (a) “(1+ , a)))
(grab-env #,#’ (lambda (x env)
(print env))
nil))
nil nil E)

shows you the macro environment that results
from extending E with the information in the
macrolet. Exactly what this is like differs rad-
ically from one Common Lisp implementation
to another. Further, while it is possible that
this macro environment will be the same as the
extended evaluation environment, there is no
guarantee that they will be anything like each
other.

The function aug-env in Figure 6 embod-
ies the trick shown above. It applies a func-
tion to an argument and the macro environment
that results from extending an initial evalua-
tion environment as specified by the given form.
Aug-env then returns whatever the function re-
turns. For example,

(aug-env E
’(macrolet ((h (a) ‘(1+ ,a))))
#’(lambda (x env) (print env))
nil)

is identical to the last example, in that it con-
structs exactly the same form and evaluates it
in the same environment.

It does not appear that there is any imple-
mentation independent way in CLtL1 to con-
vert a macro environment into an evaluation
environment. However, in a given implementa-
tion it is usually easy to do. In particular, I used
the expressions shown above to inspect macro
and execution environments in various imple-
mentations of Common Lisp, and determined
that in most of them, execution and macro en-
vironments are very similar. When this is the
case, the function with-env needed in Figure 5

Lisp Algorithms

#+:LUCID
(defun with-env (env form fn x)
(aug-env nil
form
#’with-appended-env
(1ist env fn x)))

15

#+:LUCID
(defun with-appended-env (z delta)
(let ((env (car z))
(fn (cadr z))
(x (caddr z)))
(funcall fn x (append delta env))))

Figure 8: Extending macro environments that are stacks implemented as lists.

(defun with-env (env form bind fn body)
(funcall fn body
(if (eq form ’macrolet)
(augment-env env :macro
(mapcar #’parse bind))
(augment-env env :function
(mapcar #’car bind)))))

(defun parse (b)
(list (car b)
(parse-macro (car b)
(cadr b)
(cddr b)
env)))

Figure 9: Extending macro environments in CLtL2.

can be directly implemented using aug-env as
shown in Figure 7.

In particular, in two of the Common Lisps
I looked at, execution and macro environments
are identical. In the other two, an execution
environment is a list, one of whose components
is a macro environment. Therefore in all four
cases, converting a macro environment into an
equivalent execution environment is trivial.

In the fifth Common Lisp I looked at, the re-
lationship between execution environments and
macro environments is obscured by the use of
implementation-specific data structures. How-
ever, I noticed that in this implementation a
macro environment is a stack implemented as
a list. This opens up an alternate approach to
modifying a macro environment.

Rather than converting a macro environ-
ment to an execution environment and then let-
ting the evaluator extend it, one can determine
what extension should be applied and do the
extension yourself. This depends on knowing
how extension can be done.

If a macro environment is a stack imple-
mented as a list, then a macro environment can
be extended using append. Further, if the top-
level macro environment is the empty stack nil,
than the change introduced by a form can be
determined by determining what macro envi-
ronment is created by evaluating the form at
top level. These observations lead to the im-
plementation of with-env shown in Figure 8.

In the figure, aug-env is used to determine
the change in the macro environment that re-
sults from evaluating the specified form in isola-
tion. The function with-append-env then com-
bines this change with the original macro envi-
ronment, creating an extended macro environ-
ment, which is passed to the specified function.

Improvements In CLtL2

The problem posed above can be solved in a
portable way in CLtL2, because CLtL2 specifies
a suite of functions that can extract information
from and add information to environments. As
a result, a macro environment can be directly
extended as shown in Figure 9.

The CLtL2 function augment-env is used to
add information into an environment. In the
figure, it is used to add specifications for the
macro definitions in a macrolet or the function
definitions in an flet or labels. The function
parse uses the CLtL2 function parse-macro to
convert the local macro definitions in a macrolet
into the form expected by augment-env.

Conclusion

The function macroexpand-all is a tool that
can be useful for anyone who writes or uses
complex macros. The code for macroexpand-all
is primarily implementation independent. How-
ever, in order to use it, you have to supply a def-
inition of the critical function with-env. If you

16

are using one of the implementations of Com-
mon Lisp where macroexpand-all has already
been tested, this has been done for you. If not,
you have three choices.

First, by inspecting evaluation and macro
environments in the Common Lisp you use, you
should be able discover enough about the struc-
ture of these environments, in order to imple-
ment with-env in a way that is analogous to
Figure 7 or 8.

Second, you can include a vestigial defini-
tion of with-env, such as

(defun with-env (env form fn x)
(declare (ignore form))
(funcall fn x env))

and live with the fact that macroexpand-all will
occasionally produce incorrect results. This
might be a reasonable thing to do if you are
going to use macroexpand-all merely as a de-
bugging aid. However, it is not tolerable if you
intended to use macroexpand-all as part of a
macro definition.

Third, you can wait until you have an im-
plementation of CLtL2 available and use the
implementation of with-env shown in Figure 9.

In addition to being a useful tool in its own
right, Figure 5 can be viewed as the minimal
skeletal structure on which more complex code
walkers can be written. Everything shown in
the figure is necessary, because a code walker
must expand all the macro calls in an expression
in order to work. The code has to be extended
in order for the walker to keep track of informa-
tion about an expression such as what variables
are bound. In CLtL2, this is much easier than
in CLtL1, because the code walker can retrieve
information from the environments used by the
implementation, rather than keeping track of it
redundantly.

Obtaining Macroexpand-All

The example above is written in Common
Lisp and has been tested in several different
Common Lisp implementations. The full source
is shown in Figures 5-9. In addition, the source
can be obtained over the INTERNET by using
FTP. Connect to MERL.COM (INTERNET number

R.C. Waters

140.237.1.1). Login as “anonymous” and copy
the files shown below.

In the directory /pub/lptrs/

mexp-code.lisp
mexp-test.lisp
mexp-doc.txt

source code
test suite
brief documentation

The contents of Figures 5-9 and the files
above are copyright 1993 by Mitsubishi Elec-
tric Research Labs (MERL), Cambridge MA.
Permission to use, copy, modify, and distribute
this software for any purpose and without fee
is hereby granted, provided that this copyright
and permission notice appear in all copies and
supporting documentation, and that the names
of MERL and/or the author are not used in
advertising or publicity pertaining to distribu-
tion of the software without specific, written
prior permission. MERL and the author make
no representations about the suitability of this
software for any purpose. It is provided “as is”
without express or implied warranty.

Mitsubishi Electric Research Labs and the
author disclaim all warranties with regard to
this software, including all implied warranties
of merchantability and fitness. In no event shall
MERL or the author be liable for any special,
indirect or consequential damages or any dam-
ages whatsoever resulting from loss of use, data
or profits, whether in an action of contract, neg-
ligence or other tortious action, arising out of
or in connection with the use or performance of
this software.

References

[1] Curtis, P., “Algorithms”, ACM Lisp
Pointers, 3(1):48-61, March 1990.

[2] Pitman, K.M., “Special Forms in Lisp”,
in Proc. 1980 Lisp Conference, 179-187,
August 1980.

[3] Steele G.L.Jr., Common Lisp: the Lan-
guage, Digital Press, Maynard MA, 1984.

[4] Steele G.L.Jr., Common Lisp: the Lan-
guage, second edition, Digital Press,
Maynard MA, 1990.

Lisp Algorithms

17

3. To NReverse When Consing a List
or By Pointer Manipulation, To Avoid It;

That Is the Question

Richard C. Waters

A situation that arises all the time in Lisp
is the need to create a list of elements where
the order of the elements in the list is the same
as the order that they are created in time—i.e.,
the first element computed is the first element
in the list, the second element computed is the
second element in the list, etc. There are two
basic ways of doing this: the nreverse approach
and the rplacd approach. In the nreverse ap-
proach, you push the elements onto the list as
they are computed and then use nreverse to
put the list into the correct order after all of the
elements have been computed. In the rplacd
approach, you maintain a pointer to the end
of the list and use rplacd to put each element
directly into its proper place in the list.

Which of the two approaches to creating a
list is better?

Over the two decades that I have been writ-
ing Lisp programs, I have overheard (and par-
ticipated in) quite a number of arguments about
this question. Some people argue vehemently
that the rplacd approach is obviously much
faster and therefore better. Others argue just
as vehemently that the nreverse approach is
actually faster and given its greater simplicity
is therefore obviously better. However, I have
seen very little in the way of hard facts.

As discussed in detail below, the facts sug-
gest that neither approach is obviously faster.
It is just as easy to imagine Lisp implementa-
tions where one approach is faster as implemen-
tations where the other is faster. It is easiest
of all to imagine implementations where the two

approaches run at more or less the same speed.

Experimentation suggests that the nreverse
approach is actually faster in many if not most
Lisp implementations. However, more impor-
tantly, it supports the idea that the speed dif-
ference is not enough to be important. There-
fore, given that the nreverse approach is easier
to write and understand, I recommend using
nreverse when creating lists.

A Specific Example

As a precise foundation for comparing the
two approaches, it is best to look at a specific
example. Consider implementing a simplified
version of the standard Common Lisp function
maplist that takes only a single list argument.
This example is convenient because it contains
very little computation other than the creation
of the output list.

The program maplist-nreverse shows how
a simplified maplist can be implemented using
the nreverse approach to creating the output
list. The code is clear and concise. It enumer-
ates each sublist in the list, calls the function
on each sublist, and creates a list (in reverse
order) of the results. As the final step of the
code, the list is reversed.

(defun maplist-nreverse (f list)
(do ((sub list (cdr sub))
(r nil (cons (funcall f sub) r)))
((null sub) (nreverse r))))

The program maplist-rplacd shows how a
simplified maplist can be implemented using

18

the rplacd approach to creating the output list.
The code is less clear and less concise, but
avoids calling nreverse.

(defun maplist-rplacd (f list)
(let ((r (coms nil nil)))
(do ((sub list (cdr sub))
(end r (let ((x (comns
(funcall f sub)
nil)))
(rplacd end x)

x)))
((null sub) (cdr)))))

The code starts by creating a dummy cons
cell that is later discarded. This makes the
main loop simpler and faster, because it avoids
the need for code that handles the first output
element specially. The savings is greater than
the cost of the extra cons unless the input list
is extremely short. (In the Lisp I use, the break
even point is at an input length of five.)

In order to compare maplist-nreverse with
maplist-rplacd one must look in detail at the
function nreverse, since this should properly
be considered as part of maplist-nreverse. As
shown below, nreverse is a very simple func-
tion. It merely runs down a list applying cdr
and rplacd once to each cons cell.

(defun nreverse (list)

(prog ((prev nil) next)

(when (null list) (return nil))
lp (setq next (cdr list))

(rplacd list prev)
(when (not next) (return list))
(setq prev list)
(setq list next)
(go 1p)))

The key observation to make is that the
code for maplist-rplacd is very much the same
as the code for maplist-nreverse plus the code
for nreverse. In particular, each approach calls
cons to create the cells of the output list, and
uses rplacd to place the cells in the correct
order. The only difference is that taken to-
gether maplist-nreverse and nreverse traverse
the output list twice as opposed to once for
maplist-rplacd. This is a real difference, but
not a large enough difference to be important.

R.C. Waters

Counting Instructions

To sharpen the comparison of the functions
above, it is interesting to consider the best pos-
sible ways that the functions can be imple-
mented using low level machine instructions.
Since I do my work on an HP-9000 series ma-
chine and am more familiar with it than with
other current machines, I will use HP’s PA-RISC
architecture [1] as the basis for the examples
below.

Maplist_nreverse approximates the best PA-
RISC implementation of maplist-nreverse. It
is approximate because it makes many assump-
tions about the associated Lisp implementa-
tion.> In particular, it assumes that the imple-
mentation is using the standard PA-RISC call-
ing conventions and that cons cells are imple-
mented as a 4-byte car pointer followed by a
4-byte cdr, with nil implemented as 0.

maplist_nreverse

.CALLINFO CALLER,SAVE_RP,ENTER_GR=5
r .reg %r3

sub .reg Y%r4

f .reg Urb

.ENTER
LDI o,r ; (setq r nil)
MOVB,=,n %argl,sub,DN
MOVB %argo,f

LP MOVB sub, %argo0
BLR t,%rp
MOVB %ret0,%arg0 ;1st cons arg
MOVB r,%argl ;2nd cons arg
BL cons, 4rp ;cons
MOVB %ret0,r ;(setq r ...)
LDW 4(sub),sub
COMIB,<>,n 0,sub,loop

DN MOVB r,%arg0 ;1st arg
BL nreverse,)rp;nreverse
.LEAVE

As long as quantities are stored in registers,
operations like car, cdr, rplacd, and setq can
be implemented as single PA-RISC instructions.
As a result, maplist_nreverse is very compact.
The parts of the code that concern us are the
seven instructions that create the output list.
The correspondence between these instructions
and parts of maplist-nreverse are indicated by

®The machine code shown is also approximate be-
cause it was not practical to test it. As a result, there
might be minor errors; however, this should not effect
the basic comparisons being made.

Lisp Algorithms

comments.

The list r being constructed is stored in a
register. A load immediate instruction (LDI) is
used to initialize r to nil. Two move instruc-
tions (MOVB) are used to set up the arguments of
cons. A branch and link instruction (BL) is used
to call the cons subroutine. A move is used to
store the result returned by cons in r. The last
two instructions call nreverse, whose result is
returned as the result of maplist_nreverse.

Maplist_rplacd approximates the best PA-
RISC implementation of maplist-rplacd. As
above, the relationship between the instruc-
tions that create the output list and the code
in maplist-rplacd is indicated by comments.

maplist_rplacd

.CALLINFO FRAME=4,CALLER,SAVE_RP,ENTER_GR=5
end .reg %r3

sub .reg Y%r4

f .reg Urb

.ENTER
STW 0,-52(%sp) ;set cdr r nil
ADDI -56,%sp,end ;(setq end r)
MOVB,=,n %argl,sub,DN
MOVB %argo,f

LP MOVB sub, %argo0
BLR t,%rp
MOVB %ret0,%arg0 ;1st cons arg
LDI 0,%argl ;2nd cons arg
BL cons, %rp ;cons
STW %ret0,4(end); (rplacd end x)
MOVB %ret0,end ; (setq end x)
LDW 4(sub),sub

COMIB,<>,n O,sub,LP
DN LDW -52(%sp),%ret0;return cdr r
.LEAVE

To save on overhead, the dummy header
cons cell is simulated on the PA-RISC stack in-
stead of calling cons. The first store instruc-
tion (STW) initializes the cdr of this cons cell to
nil by storing 0 in the appropriate stack frame
slot. The add immediate instruction (ADDI) ini-
tializes end to point to four bytes in front of
this cdr. The car part of the cons cell never
actually has to exist since it is never referred
to. A store instruction is used to implement
the required rplacd.

Comparing maplist_rplacd with maplist_
nreverse shows that the cost of eliminating the
call on nreverse is only one instruction execu-
tion per cons cell created in the output list.

19

This clearly opens the door to a savings in run
time. However, it turns out that nreverse is so
cheap to compute that the door is not opened
very far.

To see how inexpensive nreverse is, it is
useful to look at the modified implementation
shown in nreverse-unrolled. By unrolling the
loop so that three consecutive cons cells are
handled on each cycle of the loop, one can elimi-
nate the pointer shuffling that is required in the
implementation shown above. This reduces the
number of basic operations per cons cell from
five to three.

(defun nreverse-unrolled (list)
(prog ((prev nil) next)
(when (null list) (return nil))
lp (setq next (cdr list))
(rplacd list prev)
(when (not next) (return list))
(setq prev (cdr next))
(rplacd next list)
(when (not prev) (return next))
(setq list (cdr prev))
(rplacd prev next)
(when (not list) (return prev))
(go 1p)))

Nreverse_unrolled approximates the best
PA-RISC implementation of nreverse-unrolled
and therefore nreverse. Cdr and rplacd are
implemented with load and store instructions,
The tests for the end of the list
are implemented using compare immediate and

as above.

nreverse_unrolled
prev .reg hretl
list .reg %retO
next .reg %arg0

.CALLINFO
.ENTER
LDI 0,prev
MOVB,=,n %arg0,list,DN2

LP LDW 4(list),next ; cdr
STW prev,4(list) ; rplacd
COMIB,=,n O,next,DN2 ; When
LDW 4(next),prev ; cdr
STW list,4(next) ; rplacd
COMIB,=,n O,prev,DN1 ; When
LDW 4(prev),list ; cdr
STW next,4(prev) ; rplacd
COMIB,<>,n O,next,LP ; When
MOVB,TR,n prev,’%ret0,DN2

DN1 MOVB next,%ret0

DN2 .LEAVE

20

branch instructions (COMIB). In the loop, only
three instructions per cons cell are require to
reverse the input list.

Just as in maplist_rplacd, one instruction
per cons cell is all that is needed to store the
correct cdr pointers. The only overhead in com-
parison with maplist_rplacd is that nreverse_
unrolled has to traverse the list a second time.
This requires two instructions per cons cell.

One way to summarize the results in this
section is to say that the rplacd approach to
creating a list has a clear theoretical advan-
tage of two instructions per cons cell over the
nreverse approach.

However, a better way to summarize the
results is to consider the percentage improve-
ment. Taken together, maplist_nreverse and
nreverse_unrolled use seven instructions per
cons cell plus the computation that is performed
by cons. In the best of all possible worlds,
cons will require several instructions even if it is
coded in line. Therefore, the speed advantage
of the rplacd approach is at most 20% or so.

It should be noted that the results presented
above are not distorted by the fact that we have
looked at only one specific hardware architec-
ture. The PA-RISC architecture is at an inter-
mediate level of complexity. There are RISC
machines with much simpler instruction sets.
There are non-RISC machines with much more
complex instruction sets.

Switching to a simpler architecture would
increase the number of instructions in the ex-
amples above. However, the programs are so
similar that it is hard to imagine that the rel-
ative lengths of the critical loops would change
much. The same can be said about switching
to a more complex architecture.

Hand Tailored Code

It must be kept in mind that the speed ad-
vantage of the rplacd approach presented in
the last section is only theoretical, because the
hyper-efficient code shown is the result of care-
ful hand coding, rather than being the output
of a Lisp compiler. It is unlikely that any com-
piler will produce code that is anywhere near
as efficient.

R.C. Waters

To start with, the typical compiler is likely
to implement operations like rplacd as subrou-
tine calls rather than inline instructions. In ad-
dition, it may store some intermediate values
on the stack rather than in registers. Together,
these and other factors are liable to lead to com-
piled code that is several times larger than the
idealized code above.

The deficiencies of compilers are unfortu-
nate in many ways, but in the main, they are
not relevant to the current discussion. There
is no reason to believe that the compiler will
work better for any one function than for the
others. Therefore, the quality of the compiler
should not effect the comparisons being made
here, except for one important thing.

Since nreverse is a built-in function, imple-
mentors may choose to write it using special
implementation-specific subprimitives and /or to
hand compile it. Either way, this could tilt the
performance balance in favor of the nreverse
approach, because the hand tailored code in
nreverse could perform a good deal better than
the equivalent user code required by the rplacd
approach. Given that the typical compiler pro-
duces relatively voluminous code, this differ-
ence can be quite significant.

Cache Performance

Over the past decade, processor speed has
increased much faster than main memory speed.
This has progressed to the point where the in-
struction cycle time is 1/10 of the memory cycle
time or even less. This mismatch is overcome by
using fast cache memory between the processor
and the main memory. However, to work well,
this requires good memory locality in order to
minimize cache misses.

This could tilt the performance balance in
favor of the rplacd approach, because that ap-
proach processes the cons cells created in a very
local way. In contrast, the traversal of the out-
put list initiated by nreverse does not begin
until after the entire list has been created. If
the output list is long enough, some of the cons
cellsin it may have fallen out of the cache before
they are revisited by nreverse. If this happens,
the main loop of nreverse could slow down by

Lisp Algorithms

the equivalent of 10 additional instructions or
more for each of these cons cells.

However, it is unlikely that this would be
a significant difference for two reasons. First,
since the nreverse visits the most recently cre-
ated cons cells first, the initial cells it visits
must be in the cache. Second, given that the
typical compiler produces relatively voluminous
code, 10 instructions is not liable to be a signif-
icant percentage difference.

Some Experiments

To assess the relative practical significance
of the arguments above, I performed a set of
experiments in two very different Lisp imple-
mentations: Lucid Common Lisp on an HP-730
machine and Allegro Common Lisp on an old
(slow) Apple Maclntosh.

On the HP machine, the maplist-nreverse
and maplist-rplacd compiled into 54 and 65
instructions respectively—4 to 5 times the size
of the idealized code. Using the compiled code,
I determined the average time required per cons
cell for various size input lists. [used #’identity
as the map function to maximize the percent-
age of time spent actually creating the output
list. The results of these experiments are shown
in the table below.

input list length
1 10 10% 10® 10* 10°
83 3.1 26 26 29 6.2
85 3.3 2.8 28 31 64

nreverse
rplacd

The numbers in the body of the table are
the computation time in terms of microseconds
per cons created. Startup costs cause both ap-
proaches to perform poorly on a per-cons basis
when applied to lists of length one. Both ap-
proaches also began to behave badly on lists
of length one hundred thousand, perhaps due
to cache misses or some other memory phe-
nomenon.

Interestingly, the nreverse approach is con-
sistently faster than the rplacd approach, but
by at most 8%. It appears that this is due to
hand-coding of nreverse.

21

Comparing the speeds of the system imple-
mentation of nreverse and the result of compil-
ing nreverse-unrolled revealed that the user
compiled version is 66% slower (1.0 microsec-
onds per cons cell versus .6 microseconds per
cons cell). This suggests that something was
done to improve the machine code for nreverse
in comparison with what a user can easily get
the compiler to generate. The hand-coding
benefit obtained (.4 microseconds per cons cell)
is easily large enough to account for the fact
that the nreverse approach is faster than the
rplacd approach, and to suggest that without
the hand-coding benefit, the rplacd approach
would be faster.

The data does not reveal any cache-miss
penalty for the nreverse approach on long lists.

On the Maclntosh, the maplist-nreverse
and maplist-rplacd compiled into 29 and 42
instructions respectively. This reflects the fact
that the Maclntosh is not a RISC machine.
Since I know very little about the machine in-
structions the Maclntosh uses, I cannot com-
ment on how close this is to the best that is
possible.

Timing experiments identical to the ones
above revealed the following.

input list length
1 10 10% 10 10* 10°
nreverse 280 95 75 75 75 73

rplacd 280 110 92 91 90 90

As above, startup costs cause poor perfor-
mance on a per-cons basis for lists of length one.
However, there is no diminution of speed even
on very long lists.

For all but the shortest lists, the nreverse
approach is faster than the rplacd approach—
in general, 15-18% faster. It appears that this is
due to a major hand-coding effect for nreverse.

Comparing the speeds of the system imple-
mentation of nreverse and the result of com-
piling nreverse—unrolled reveals that the user
compiled version is 208% slower (40 microsec-
onds per cons cell versus 13 microseconds per
cons cell). This suggests that nreverse has been
very carefully hand coded. As above, the hand-
coding benefit obtained (27 microseconds per

22

cons cell) is easily large enough to account for
the fact that the nreverse approach is faster
than the rplacd approach, and to suggest that
without the hand-coding benefit, the rplacd ap-
proach would be faster.

The data does not suggest any cache-miss
penalty for either approach on long lists.

The experiments suggest that of the three
sources of speed difference between the two ap-
proaches (a theoretical advantage for rplacd,
a hand-coding advantage for nreverse, and a
cache performance advantage for rplacd) the
hand-coding advantage wins out and therefore
the nreverse approach is fastest.

However, more than this, it is clear that the
speed difference between the two approaches is
not very large. If the computation being per-
formed to compute the elements being consed
together involved much more than just comput-
ing identity, the difference would recede into
complete insignificance.

If you are interested in such things, you
might run an experiment in your Lisp to see
if any significant speed difference can be found.
However, in the absence of clear evidence for
such a difference, I recommend assuming that
there is none.

Conclusion

The rplacd approach to creating an out-
put list has a theoretical speed advantage, but
as a practical matter this appears to be over-
whelmed by the fact that nreverse is a system
function that can be hand coded by the sys-
tem implementors. As a result, the nreverse
approach is probably fastest in most Lisp im-
plementations. Even if the rplacd approach is
faster in a given Lisp, it is unlikely to be much
faster. Therefore, since the nreverse approach
is simpler and clearer it is the best thing to do
in almost every situation.

The only situation where I would consider
using the rplacd approach is if I were a Lisp
system implementor and had the opportunity
to write a system function where I could hand
tune machine code for creating a list. In this sit-
uation, the rplacd approach should be able to
achieve its theoretical advantages and I would

R.C. Waters

consider trying. However, it should be realized
that there would be much more to be gained
through the hand tuning itself than through the
choice of which approach to tune.

In closing I would like to note that the very
best thing to do is to avoid writing code that
conses lists altogether. Whenever possible, you
should use standard parts of Common Lisp that
do the consing for you. In particular, you should
use functions like replace, map, reduce, remove,
union, etc. whenever they are appropriate. Be-
yond this, you should take advantage of looping
macro packages such as loop and Series.

For example, using the extended features of
loop that are available in the proposed stan-
dard for Common Lisp [2], a simple version of
maplist could be written as follows.

(defun maplist-loop (f list)
(loop for sub on list
collect (funcall f sub)))

Alternatively, the Series macro package [3]
could be used as shown below.

(defun maplist-series (f list)
(collect
(map-fn t £ (scan-sublists list))))

Either way, the resulting code is clearer,
more compact, and no slower than anything else
you can write.

References

[1] Hewlett-Packard, PA-RISC 1.1 Architec-
ture and Instruction Set Reference Manual,
Hewlett-Packard, Cupertino CA, 1986.

[2] White, J.L., “Loop”, in Common Lisp: the
Language, Second Edition, 709-747, Steele
G.L.Jr., Digital Press, Maynard MA, 1990.

[3] Waters R.C., “Automatic Transformation
of Series Expressions into Loops”, ACM
Transactions on Programming Languages
and Systems, 13(1):52-98, January 1991.

