
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Automatic Structuring of High-Performance
Hypermedia Documents

Rebecca Hwa, Joe Marks, Stuart Shieber

TR95-06 December 1995

Abstract

Embedded hypermedia documents are becoming more common in aircraft cockpits, power-
and industrial-plant control panels, and other exacting multimodal user interfaces. These high-
performance hypermedia documents (HPHDs) are often large and heavily cross referenced, yet
they must support extremely efficient user navigation. Designing such documents well is dif-
ficult. In this paper, we describe an approach to structuring HPHDs automatically. We show
how ease of navigation can be formulated as a set of optimality criteria. Given these criteria,
we describe how an abstract statement of the document-structuring problem is equivalent to a
version of the well-known optimization problem of graph partitioning. We present a system that
uses known graph-partitioning heuristics to structure HPHDs with near optimality. Keywords:
high-performance hypermedia documents, hypermedia-document structuring, hypermedia de-
sign, graph partitioning, heuristic search.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1995
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

MERL { A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Automatic Structuring of

Embedded Hypermedia Documents

Rebecca Hwa
Harvard Univ.

Joe Marks
MERL

Stuart Shieber
Harvard Univ.

TR-95-6 February 1995

Abstract

Embedded hypermedia documents (HDs) are becoming more common in air-
craft cockpits, power- and industrial-plant control panels, and other user inter-
faces to complex systems. These hypermedia documents are often large and
heavily cross referenced, yet they must support extremely e�cient and intu-
itive user navigation. Designing such documents well is di�cult. In this paper,
we describe a computer-based approach to structuring HDs. We show how
an interface designer can quantify ease of navigation in a way that makes the
HD-structuring problem equivalent to a version of the well-known optimization
problem of graph partitioning. This reduction to graph partitioning is the ba-
sis for an implemented system that uses known graph-partitioning heuristics to
structure HDs automatically.
Keywords: display ergonomics, information display aids, human-machine in-
teraction.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to

copy in whole or in part without payment of fee is granted for nonpro�t educational and research purposes

provided that all such whole or partial copies include the following: a notice that such copying is by per-

mission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors

and individual contributions to the work; and all applicable portions of the copyright notice. Copying,

reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi

Electric Information Technology Center America. All rights reserved.

Copyright c
 Mitsubishi Electric Information Technology Center America, 1995

201 Broadway, Cambridge, Massachusetts 02139

1. First printing, TR95-6, February 1995. Revised April 1996.

1

1 Introduction

The bridge of a supertanker, an aircraft cockpit, a control panel for a nuclear-power plant:
these are among the most complex and sophisticated user interfaces ever designed. Now-
adays, such interfaces typically contain one or more embedded hypermedia documents (HDs).
They are like most other HDs in that each page of the document contains information in
the form of text and graphics, and navigational links whereby the user can move to other
pages. However, the performance requirements for these HDs are far greater than for most
hypermedia applications.

Facilitating e�cient and intuitive navigation is the central design problem for HDs em-
bedded in complex-system interfaces. In this paper we describe a simple set of metrics for
stating and quantifying ease of navigation. When stated in terms of these metrics, HD
structuring reduces to a variant of graph partitioning, a well-known combinatorial optimiza-
tion problem.1 Existing heuristics for graph partitioning can then be applied to yield a
near-optimal document structure.

The method has been applied to the design of one of the embedded HDs in the cockpit of
the U. S. Army's Comanche helicopter. For expository purposes, we illustrate the approach
in this paper by considering the design of a simple HD for a hypothetical bank ATM; ATM
interfaces are probably the most familiar examples of embedded HDs. In the next section,
we describe our technical approach in detail with the aid of simple worked ATM examples.
We then describe extensions to our basic approach, and conclude with a discussion of future
work.

2 Technical Approach

2.1 Problem statement

A display item (DI) comprises the symbols or text that are displayed as an atomic unit
to provide information or allow for an action. In the ATM example, these include DIs for
withdrawing money or checking an account balance. The complete list of DIs for the ATM
example is given in Table 1. For each DI we also give the area required for its display, and
the symbol by which we will refer to it throughout the rest of the paper.

To generate ease-of-navigation metrics for a HD, we must give the interface designer an
ability to state and quantify information about how the display items will be accessed and
perceived. We provide two simple predicates for this purpose, sequence and cluster. The
sequence predicate is used to indicate the order in which DIs are accessed by a user in the
performance of a typical task. The cluster predicate is used to identify DIs that share a
common property, one important enough to have them located near each other in the HD.
Each predicate instance can be assigned an importance weight by the designer. This weight
might be based on something as concrete as usage-pattern data, or something as vague as

1The general utility of mathematical graphs for modeling aspects of HD structuring has been noted
previously by others [7].

MERL-TR-95-6 February 1995

2

Action Area DI Symbol
Welcome message 2.0 WELCOME

Checking balance 1.5 X BAL

Savings balance 1.5 SAV BAL

Deposit 2.0 DEP

Withdrawal 2.0 WD

Checking-to-savings transfer 1.5 X SAV TRNSFR

Savings-to-checking transfer 1.5 SAV X TRNSFR

$20 fast-cash withdrawal 1.5 $20

$50 fast-cash withdrawal 1.5 $50

$100 fast-cash withdrawal 1.5 $100

Exit dialogue 2.0 EXIT

Table 1: DI data for a hypothetical ATM example.

the designer's intuition. A sample set of design predicates for the ATM example is given in
Table 2.

In addition to a set of design predicates, we need two more data to complete a problem
instance: the area of the display screen2 and the area required for navigational links.3 For
our hypothetical example, we assume a screen area of 7.0, and a navigation-link area of 1.0.

The statement of our example problem is now complete. The computer's task is to assign
DIs to pages and to instantiate navigational links where needed so that the following ease-
of-navigation metrics are minimized: (i) the number of inter-page moves required to traverse
each DI sequence, weighted by the importance of the sequence; and (ii) the distribution
of conceptually clustered DIs across multiple pages, weighted by the importance of the
cluster. In the next two subsections we show how this computational task can be solved via
a reduction to the problem of graph partitioning, and by the subsequent application of a
known graph-partitioning heuristic.

2.2 Reduction to graph partitioning

Given a graph G = (V;E), where V is a set of vertices and E is a set of weighted edges that
connect the vertices, the traditional graph-partitioning problem is to divide V into k equal-
sized subsets fV1; : : : ; Vkg such that the sum of the weighted edges connecting vertices in
di�erent subsets (the size of the cut set) is minimized. We will use a slightly di�erent variant
of graph partitioning in which vertices can have di�erent weights, and the equal-cardinality
requirement for each partition is replaced by the requirement that the sum of the vertex

2We make the simplifying assumption that a set of DIs can be simultaneously displayed on a screen if
their areas do not sum to more than the screen area. This is of course not true in general. We describe later
how this assumption might be relaxed.

3Like most embedded HDs, ATM interfaces use \soft" buttons whose functionalities change from screen
to screen. The current mapping of the soft buttons must therefore be indicated on the screen. The area
required to indicate the current mapping is what we denote as the navigational-link area.

MERL-TR-95-6 February 1995

3

sequence Predicate Weight
WELCOME !X BAL !WD !EXIT 15
WELCOME !X BAL !SAV BAL 10

!X SAV TRNSFR !EXIT

WELCOME !DEP !X BAL !EXIT 15
WELCOME !$20 !EXIT 15
WELCOME !$50 !EXIT 15
WELCOME !$100 !EXIT 15
WELCOME !SAV BAL 15

!SAV X TRNSFR !EXIT

cluster Predicate Weight
f$20, $50, $100g 100
fWELCOME, EXITg 100

Table 2: Design predicates for the hypothetical ATM example.

weights in any partition must not exceed some speci�ed amount.
We reduce HD structuring to graph partitioning by mapping DIs to graph vertices, and

sequence and cluster predicates to graph edges. The precise nature of the mapping
relationship is best illustrated by example: in Figures 1{6 we create the graph-partitioning
instance that corresponds to the ATM example described in Table 1.

We begin by creating a graph vertex for each DI listed in Table 1, as shown in Figure 1.
The weight of each graph vertex is set equal to the area required for its corresponding
DI. Then we add edges that correspond to the design predicates from Table 2. The �rst
sequence predicate causes three new edges to be added, which connect the vertices as shown
in Figure 2. The weight of each new edge is the importance weight of the sequence predicate
that engendered the edge, 15 in this case. The second sequence predicate causes only three
new edges to be created, because one already exists between the vertices corresponding to
the DIs WELCOME and X BAL. The new edges are given a weight of 10, and the weight of
the existing edge (WELCOME; X BAL) is increased to 25 (see Figure 3). The graph after all
sequence predicates have been processed is shown in Figure 4.

Next, we consider the cluster predicates in Table 2. They are re
ected in the graph
by making the subgraphs consisting of vertices f$20, $50, $100g and fWELCOME, EXITg into
completely connected subgraphs by introducing or modifying edges as before (see Figure 5).

If we were now to partition the graph in Figure 5, we would necessarily obtain a solution
with at least one DI on every page: this is intrinsic to the concept of graph partitioning.
However, it is not always desirable. For example, many well-structured HDs have pages
that contain no DIs, only navigational-link buttons. A more subtle limitation of a naive
partitioning approach is that it cannot allow for indirect linkage (i.e., when the user moves
from one page to another via a third page that contains no DI of interest) to follow a DI
sequence. Fortunately, we can overcome this limitation by an additional �nal step in the
reduction: for each edge (A; B), we create a new \stepping-stone" vertex vAB of size 0, and we

MERL-TR-95-6 February 1995

4

DEP

WELCOME EXIT

X_BAL

WD

SAV_X_TRNSFR

SAV_BAL

X_SAV_TRNSFR

$20 $100$50

Figure 1: Graph vertices for the hypothetical ATM example.

DEP

15

WELCOME EXIT

X_BAL

WD

SAV_X_TRNSFR

SAV_BAL

X_SAV_TRNSFR

$20 $100$50

15

15

Figure 2: The graph after processing the �rst sequence predicate.

MERL-TR-95-6 February 1995

5

DEP

25

WELCOME EXIT

X_BAL

WD

SAV_X_TRNSFR

SAV_BAL

X_SAV_TRNSFR

$20 $100$50

10

10

10 15

15

Figure 3: The graph after processing the second sequence predicate. New or modi�ed
edges are drawn with a solid line, unmodi�ed edges with a dotted line.

DEP

25

WELCOME EXIT

X_BAL

WD

SAV_X_TRNSFR

SAV_BAL

X_SAV_TRNSFR

$20 $100$50

1515

15 15 15
15 15 15

10

15

10

15 10
15

15

15

15

Figure 4: The graph after all sequence predicates have been processed.

MERL-TR-95-6 February 1995

6

DEP

25

WELCOME EXIT

X_BAL

WD

SAV_X_TRNSFR

SAV_BAL

X_SAV_TRNSFR

1515

15 15 15
15 15 15

10

15

10

15 10
15

15

15

15

100

100

100100

100 100
$20 $100$50

100100

Figure 5: The graph after processing the cluster predicates.

replace edge (A; B) with edges (A; vAB) and (vAB; B); the new edges have the same weight as the
edge they replace. The �nal graph is shown in Figure 6. In the next subsection we will see
how a minimum-cost partitioning of this graph will correspond to a document structure that
is optimal with regard to the ease-of-navigation metrics described at the end of the problem
statement.

2.3 Partitioning the graph

Once the complete graph has been generated, a good partitioning of it must be found. Al-
though graph partitioning is NP-complete [2], near-optimal solutions can usually be obtained
using heuristic methods. The Kernighan-Lin (KL) algorithm is a standard method for graph
bisection, the special case of graph partitioning that arises when the vertex set is to be split
into only two partitions [3].4 The basic KL algorithm can be readily generalized to account
for: more than two partitions; weighted vertices; weighted edges; and various constraints on
the sizes of the vertex subsets, such as requiring that no subset exceed a certain size. We use
a variant of the KL algorithm that is generalized appropriately for our application: a simple
preprocess is used to generate an initial partitioning that satis�es the area constraint;5 if two
vertices in the graph are connected by an edge and are assigned to di�erent subsets in the
partitioning, then a navigational link is instantiated to connect the two pages corresponding
to the subsets; the area taken up on a page is computed by summing the areas required for

4Recent research has produced a host of new graph-partitioning algorithms, some of which are demon-
strably superior to the KL algorithm [1]. We used the KL algorithm because it is simple and relatively easy
to modify and generalize.

5The KL algorithm requires an initial valid partitioning as input.

MERL-TR-95-6 February 1995

7

DEP

25

WELCOME EXIT

X_BAL

WD

SAV_X_TRNSFR

SAV_BAL

X_SAV_TRNSFR

$20 $100$50

1515

15 15 15
15 15 15

10

15

10

15 10
15

15

15

15

100

100

100100

100 100
100100

Figure 6: The complete graph after the processing of all design predicates and the introduc-
tion of stepping-stone vertices.

its DIs and navigational links.
We ran the algorithm 100 times on the graph in Figure 6, with a di�erent initial partition-

ing each time. (Each run took approximately 10 seconds on an HP 9000/735 workstation.)
Three of these runs produced the same partitioning, one with a cut-set size of 220 (see Fig-
ure 7), which results in the document structure summarized in tabular form in Table 3 and
depicted graphically in Figure 8. The document structure found for this simple example re-
sembles the ones usually used in actual ATMs: the initial page presents the welcome message
and contains a menu of all available transactions; the other pages contain the DIs necessary
for these transactions, along with a link back to the initial page. The utility of stepping-stone
vertices is demonstrated by the indirect linkage involved in following the second DI sequence
in Table 2: After visiting the X BAL DI on the Checking page, the sequence is completed by
moving to the Savings page via the Start page.

Given the design predicates in Table 2, the structure in Figure 8 is probably optimal.
However, a di�erent set of reasonable design predicates can lead to a very di�erent document
structure. For instance, starting from the alternative design predicates in Table 4, 22 of 100
runs of the partitioning algorithm generated the solution illustrated in Table 5 and Figures 9
and 10. The document structure is distinguished by its exclusive use of forward links: the
user can only move forwards in the document, but not backwards. Although this structure
may seem strange, it is a very good solution given the design speci�cation in Table 4.

MERL-TR-95-6 February 1995

8

DEP

25

Fast Cash

Start

Savings Checking

WELCOME EXIT

X_BAL

WD

SAV_X_TRNSFR

SAV_BAL

X_SAV_TRNSFR

1515

15 15 15
15 15 15

10

15

10

15 10
15

15

15

15

100

100

100100

100 100
100100

$20 $100$50

Figure 7: The partitioned graph. The rectangular boxes indicate the vertex partitions, each
tagged with a mnemonic partition name. Graph edges internal to a partition, shown as
dotted lines, do not contribute to the cut-set cost, which is the sum of the inter-partition
edge weights.

MERL-TR-95-6 February 1995

9

Page DIs Assigned Links Area
Start WELCOME Fast Cash 7.0

EXIT Checking
Savings

Fast Cash $20 Start 5.5
$50

$100

Checking X BAL Start 6.5
DEP

WD

Savings SAV BAL Start 5.5
X SAV TRNSFR

SAV X TRNSFR

Table 3: The document structure engendered by the partitioned graph.

Start

Welcome Message

Exit

⇒ Fast Cash

⇒ Checking

⇒ Savings

$20

$50

$100

⇒ Start

Fast Cash

Checking Balance

Deposit

Withdrawal

⇒ Start

Checking

Savings Balance

Checking to Savings

Savings to Checking

⇒ Start

Savings

25

25

45

40

40

45

Figure 8: The document structure engendered by the partitioned graph. Numbers on the
links are the summed weights of edges between the appropriate partitions. Note that the
areas of the items on each page, both the DIs and links, �t within the area limit.

MERL-TR-95-6 February 1995

10

sequence Predicate Weight
WELCOME !DEP !WD !EXIT 10
WELCOME !X BAL !WD 5

!SAV X TRNSFR !EXIT

WELCOME !SAV BAL 5
!SAV X TRNSFR !EXIT

WELCOME !DEP !X SAV TRNSFR 5
!SAV BAL !EXIT

WELCOME !X BAL !WD !EXIT 5
WELCOME !X BAL !$20 !EXIT 20
WELCOME !X BAL !$50 !EXIT 20
WELCOME !X BAL !$100 !EXIT 30

cluster Predicate Weight
f$20, $50, $100g 100

Table 4: Alternative design predicates for the hypothetical ATM example.

Page DIs Assigned Links Area
Start WELCOME Checking 6.5

X BAL Savings
Fast Cash

Exit
Checking DEP Savings 6.0

WD Fast Cash/
Exit

Savings SAV BAL Fast Cash/ 5.5
SAV X TRNSFR Exit
X SAV TRNSFR

Fast Cash/ $20 6.5
Exit $50

$100

EXIT

Table 5: The document structure engendered by the new partitioning.

MERL-TR-95-6 February 1995

11

Start

Welcome Message $20

$50

$100

Fast Cash/ Exit

Checking Balance

Deposit

Withdrawal

Checking

Savings Balance

Checking to Savings

Savings to Checking

Savings

25

15

85

25

10

Exit

10

⇒ Fast Cash/Exit

⇒ Checking

⇒ Savings

⇒ Fast Cash/Exit
⇒ Fast Cash/Exit

⇒ Savings

Figure 9: The document structure engendered by the new partitioning.

MERL-TR-95-6 February 1995

12

DEP

80

Fast Cash

Start

Savings

Checking

WELCOME

SAV_X_TRNSFR

15
15

15

10

5

5

10

15

1010

100100

100 100
100100

$20 $100$50

10

5

5

EXIT

SAV_BAL

5

X_BAL

20 20 30

15 15

WD

X_SAV_TRNSFR

Figure 10: A di�erent partitioning: cut-set size = 140.

3 Extensions

The simple examples discussed in the previous section do not illustrate some important issues
that arise in more realistic examples. In this section, we examine the most signi�cant issues
in more detail, and describe how they might be addressed in our framework.

3.1 Enriching the Input Speci�cation

DI sequences and clusters are not the only design predicates with which the interface de-
signer might like to express design desiderata. One of the advantages of our approach is
the ease with which other design considerations can be incorporated, and the designer's vo-
cabulary commensurately increased. For example, the inverse of the cluster predicate, the
anticluster predicate, can be used to identify pairs of DIs that are conceptually distinct.

MERL-TR-95-6 February 1995

13

For example, to avoid confusion one might want to discourage close association between
the DIs that relate to checking and savings accounts. This distinction would be re
ected
in the document structure by placing each DI in an anticlustered pair on a di�erent page.
Anticlusters can be incorporated into our approach by adding edges with negative weights
to a graph during the reduction step.

Another potentially useful design predicate is maximally accessible. Maximally ac-
cessible DIs are those that should be quickly accessible from anywhere in the document. In
the ATM example, EXIT is a good example of a DI that one might want to make maximally
accessible. This design predicate can be incorporated into our approach by adding positively
weighted edges between each graph vertex and the one that corresponds to the maximally
accessible DI.

3.2 Other Extensions

The two re�nements described in the previous subsection are straightforward, but several
other desirable extensions will be more di�cult to achieve:

� We have assumed for simplicity that the area required for a DI can be represented
satisfactorily as a one-dimensional value. While this is the case for some hypermedia
documents (e.g., typical HTML documents), in general it is not true: even if the sum
of the display areas for a set of DIs is less than the page size, there is no guarantee
that the DIs can be placed on the page without overlap, let alone be placed in an
aesthetic or logical arrangement. Incorporating page layout into our approach might
be accomplished using existing techniques [4, 5, 6].

� Suitable page titles are essential for HD navigation: each navigational link must indi-
cate the title of the page to which it points. However, sometimes the most e�ciently
navigable documents will have pages that contain disparate DIs, making it very di�cult
to title those pages appropriately. It may be possible to utilize hierarchic taxonomies
of domain-dependent terms to generate page titles automatically, or to generate anti-
cluster predicates that will help prevent unfortunate groupings of DIs on the same
page.

MERL-TR-95-6 February 1995

14

� We envisage any automatic HD-structuring system being used in an iterative fashion,
with the designer making repeated changes to the design predicates, and the computer
generating many di�erent HD structures. It is therefore desirable that a small change to
a set of design predicates lead to a small change in document structure. Unfortunately,
this is not true of our current system: small changes in the design predicates can result
in large changes to the resulting document structure. Incorporating some stability into
the graph-partitioning process may require the development of new graph-partitioning
algorithms.

� In some instances the placement of duplicate DIs on di�erent pages can result in easier
navigation. For example, including the EXIT DI on more than one page in our example
ATM documents would allow the user to exit the document more conveniently. How-
ever, allowing for duplicate DIs is not readily accommodated in the current reduction
to graph partitioning. Solving this problem may also require the development of novel
partitioning algorithms.

4 Conclusions and Future Work

By reducing the HD-structuring problem to graph partitioning, we can make use of heuristic
algorithms to generate HD structures automatically. The method described here has been
tested on one of the embedded HDs from the cockpit of the U.S. Army's Comanche helicopter.
This HD contains approximately 70 pages. Our system produced reasonable structures for
it within a few hours on a workstation. However, as we have indicated above, our experience
on this project led us to conclude that several extensions will be necessary before our system
is practically useful for real-world applications. Nevertheless, we are optimistic that these
extensions can be realized with future work.

In the future, we hope to experiment with other application domains using the same
technique. For instance, telephone-menu systems exhibit some of the characteristics of HDs
(with space limitations in visual HDs being replaced by time limitations in the aural regime),
and could potentially bene�t from better structuring. More speculatively, it may be possible
to use similar techniques to restructure existing HDs based not on a designer's speci�cation
of access data, but rather on pro�ling the usage of the document itself.

Acknowledgments

We would like to acknowledge the collaboration of the following people on the formulation
of the Comanche-helicopter HD: Dave Davis, Betsy Constantine, and Jim Kelly of TICA
Associates, Cambridge, Massachusetts; and Barry Smith and his colleagues at NASA Ames,
California. We also thank Wheeler Ruml for helpful discussions about graph partitioning.
Hwa and Shieber were funded in part by NASA through a subcontract from TICA Associates
and by National Science Foundation Grant IRI-9350192.

MERL-TR-95-6 February 1995

15

References

[1] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: A survey.
Integration: The VLSI Journal, 19:1{81, 1995.

[2] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simpli�ed NP-complete graph
problems. Theoretical Computer Science, 1(3):237{267, 1976.

[3] B. Kernighan and S. Lin. An e�cient heuristic procedure for partitioning graphs. The
Bell System Technical Journal, 49(2):291{307, February 1970.

[4] Won Chul Kim and James D. Foley. Providing high-level control and expert assistance in
the user interface presentation system. In Proceedings of INTERCHI '93, pages 430{447,
Amsterdam, The Netherlands, April 1993.

[5] Andrew Sears. AIDE: A step toward metric-based interface development tools. In Pro-
ceedings of the Eighth Annual Symposium on User Interface Software and Technology
(UIST '95), pages 101{110, Pittsburgh, PA, November 1995.

[6] Louis Weitzman and Kent Wittenburg. Automatic presentation of multimedia documents
using relational grammars. In Proceedings of the Second Annual ACM Conference on
Multimedia, pages 443{451, San Francisco, CA, October 1994.

[7] Yan Yu�k and Thomas Sheridan, 1995. Personal communication.

MERL-TR-95-6 February 1995

	Title Page
	Title Page
	page 2

	Automatic Structuring of High-Performance Hypermedia Documents
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17

