MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

A General Cartographic Labeling
Algorithm

Shawn Edmondson, Jon Christensen, Joe Marks, Stuart Shieber

TR96-04 December 1996

Abstract

Some apparently powerful algorithms for automatic label placement on maps use heuristics that
capture considerable cartographic expertise but are hampered by provably inefficient methods
of search and optimization. On the other hand, no approach to label placement that is based on
an efficient optimization technique has been applied to the production of general cartographic
maps — those with labeled point, line, and area features — and shown to generate labelings of
acceptable quality. We present an algorithm for label placement that achieves the twin goals of
practical efficiency and high labeling quality by combining simple cartographic heuristics with
effective stochastic optimization techniques.

Cartographica, Vol. 33, No. 4, Winter 1996, pp. 13-23

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright(© Mitsubishi Electric Research Laboratories, Inc., 1996
201 Broadway, Cambridge, Massachusetts 02139

1. First printing, TR96-04, January 1996.

1 Introduction

Many apparently compelling techniques for automatic label placement use sophisticated
heuristics for capturing cartographic knowledge, but, as noted by Zoraster (1991), also use
inferior optimization strategies for finding good tradeoffs between the variety of competing
concerns involved in typical labeling problems. These techniques use procedural methods or
“if-then” production rules to represent cartographic knowledge about good label-placement
practice, and a variant of depth-first search to explore different labelings (Doerschler and
Freeman, 1992; Ebinger and Goulette, 1990; Jones, 1989).

However, depth-first search is now known to be a markedly inferior technique for find-
ing near-optimal labelings in the set of all possible labelings. Among the more powerful
optimization strategies that have been proposed for label placement, physical relaxation
(Feigenbaum, 1994; Hirsch, 1982), integer programming (Zoraster, 1986; Zoraster, 1990),
gradient descent (Christensen, Marks, and Shieber, 1993), and simulated annealing (Chris-
tensen, Marks, and Shieber, 1993) are four techniques that all outperform depth-first search
by a wide margin (Christensen, Marks, and Shieber, 1995).

So why have these supposedly superior techniques not been adopted widely? In general,
implementations of the better optimization strategies have not dealt with the full range of
cartographic features (that is, point, line, and area features), nor have they incorporated
sufficient cartographic knowledge about text placement. For these reasons, the maps they
produce have not been persuasive. However, this shortcoming is not intrinsic. In this paper
we show how detailed cartographic knowledge and powerful optimization can be combined
effectively. The resulting algorithm is general (it can label point, line, and area features),
efficient (it can label dense, page-sized maps in seconds on a computer workstation), and
effective (the resulting labelings are visually appealing and consistent with good cartographic
practice). Furthermore, compared to existing algorithms, it is concisely stated and easily
implemented.

The key to our approach is a careful separation of the cartographic knowledge needed
to recognize a good labeling from the optimization procedure required to find one. Our
notion of cartographic knowledge is a procedure for computing an absolute numeric score
that is properly indicative of a labeling’s quality; no other properties of this scoring function
(such as continuity, differentiability, or definability as production rules) are assumed. We
treat the scoring function as an arbitrary objective function to be optimized, and apply a
powerful optimization procedure to find its near-optimal values. These values correspond to
near-optimal labelings.

To establish the viability of this concept, we describe a particular optimization procedure
and a particular scoring function that can be used together in the framework we propose
above. Neither are necessarily optimal: it was not our intent to provide the ultimate solution
for automatic map lettering, a long-term goal that is probably best left to professional
cartographers, not computer scientists. However, we believe that we have identified the
framework within which the ultimate solution probably lies. As evidence for this claim, we
present a simple system prototype that generates visually compelling labelings for page-sized
maps in near real time.

We begin by describing our technical approach in sufficient detail to enable our work

MERL-TR-96-04 January 1996

to be replicated in its entirety (Sections 2 through 5). We then present some sample maps
labeled using an implementation of our method (Section 6), and conclude with an analysis
of present and future work on label placement (Section 7).

2 Technical Approach

Our approach is predicated on a division of the label-placement task into three essentially
independent subtasks. They are:

1. Candidate-position generation: Given a point, line, or area feature, identify a set of
candidate locations for its label. A labeling is then a set of label positions, one drawn
from each feature’s set of candidate positions.

2. Position evaluation: Given a labeling, efficiently compute a score that indicates its
quality with respect both to the position of labels relative to the labeled symbology,
and to spatial contention between the label and other features and feature labels.

3. Position selection: Given a set of candidate label positions for each map feature, choose
one label position from each set so that the overall quality of the labeling, as determined
by the evaluation method, is as high as possible.

We discuss these subtasks in reverse order in the next three sections. Because of the
simplicity of the position-selection method, we discuss it briefly; full details have been pre-
sented elsewhere (Christensen, Marks, and Shieber, 1995). We then consider the problems
of label-position evaluation and generation, which form the core of our contribution in this

paper.

3 Position Selection

Given a set of generated candidate positions for each label and an overall evaluation function,
selecting positions for all the labels so that the evaluation function is globally minimized! is
an optimization task. Although many different methods have been proposed for this task,
we favor a method based on simulated annealing (Kirkpatrick, Gelatt Jr., and Vecchi, 1983):

1. For each feature, place its label randomly in any one of the candidate positions for
that feature.

2. Initialize a “temperature” T' to an initial high value.
3. Repeat until the rate of improvement falls below a given threshold:

(a) Decrease T according to an annealing schedule.

LOur statement of the evaluation function associates lower values with better labelings, so that the
optimization problem is one of minimization. This choice is, of course, arbitrary.

MERL-TR-96-04 January 1996

(b) Pick a feature randomly and move its label to a new position randomly chosen
from that feature’s set of candidate positions.

(c) Compute AF, the change in the overall labeling’s evaluation caused by reposi-
tioning the label.

(d) If the new labeling is worse, undo the label repositioning with probability P =
1.0 —exp(—AE/T).

The algorithm is almost completely specified in the outline above. The remaining details
concern the initial temperature (chosen so that P = 2/3 when AF = 1), the annealing
schedule (a standard geometric schedule), and the termination condition (evaluation of 5n
consecutive repositionings with no changes made, where n is the number of labeled features).
Full details concerning these issues are provided elsewhere (Christensen, Marks, and Shieber,
1993; Christensen, Marks, and Shieber, 1995). It suffices here to note that the parameters are
such that 100,000 computations of AFE are typically required for convergence on problems
involving up to 1,500 labeled features. Thus the overall efficiency of the label-placement
algorithm depends crucially on efficient computation of AF.

This optimization method has several advantages. First, it is effective at finding near-
optimal solutions to label-placement problems. Christensen, Marks, and Shieber (1995)
demonstrate through exhaustive empirical testing of point-feature label-placement algo-
rithms that simulated annealing dominates all other algorithms for this problem. Second,
the method is efficient; labelings are generated in an amount of time that is reasonable and
competitive with other algorithms. Finally, it makes no assumptions about the evaluation
function beyond the efficient computability of the numeric difference AFE. This last advan-
tage suggests that the method should generalize beyond the point-feature label-placement
problem to which it was initially applied. The remainder of this paper can be seen as a
verification of this suggestion.

4 Position Evaluation

We now turn to the task of evaluating label positions. In order to compare various labeling
solutions, we require the ability to compute a single numeric score, F, that indicates the
quality of a labeling. Furthermore, the change in score, AFE, that results from repositioning
a single label must be computable efficiently. In our algorithm, each label’s contribution to
E is computed as a weighted sum of simple metrics, which are described below.

For each metric, we define an ideal case and a borderline case. In the ideal case, the
candidate position is ideally located as far as the given metric is concerned; in the borderline
case, the position is poor, but barely acceptable. Metrics will be designed to yield a value
of 0.0 for ideal cases, 1.0 for borderline cases, and higher values for objectionable cases.

First, we consider metrics that quantify spatial crowding and overlap. Next, we examine
positioning metrics that depend on the spatial relationship between a label and the feature
it tags. We conclude with a description of how the various metrics are combined into a single
evaluation function.

MERL-TR-96-04 January 1996

Figure 1: Calculation of ¢ for the overlap metric LineQuver.

4.1 Overlap metrics

Feature overlap. In order to discourage label-symbol overlaps, we need to know the
number of feature symbols (the actual circles, polylines, and polygons comprising a map’s
nontextual symbology) that a given label overlaps. We consider three metrics, PointQOver,
LineQver, and AreaQOuver, which measure overlaps with point, line, and area symbols, re-
spectively. When there are no overlaps of a given kind, we have the ideal case. We will take
the borderline case to be a single overlap. Thus, one reasonable metric is to simply count the
number of overlaps. This is exactly what is done for the metric PointQOver, which is defined
as the number of overlaps between a selected label position and all point-feature symbols.

For area and line features, however, we need a more subtle metric. A label position that
intersects and is parallel to the polyline of a line feature or an area border is completely
unacceptable. However, a position that intersects the polyline at right angles might qualify
as barely acceptable. We define LineQuver and AreaQuver accordingly: Let p; and py be the
points where a polyline enters and exits the label’s bounding rectangle. (See Figure 1.) Let
the vector b point in the direction of the label’s baseline (east in Figure 1) and the vector
0 = (pa — p1)/|p2 — p1| approximate the direction of the polyline where it intersects the label.
The value of the metric (AreaOver or LineQuver) is then 1+ 9|5 - b).

This metric ranges from 1.0 (label and line perpendicular: barely acceptable) to 10.0
(label and line parallel: unacceptable). In the example of Figure 1, LineQver is 2.56 for (a),
and 9.86 for (b). These values are appropriate, since (a) is a much better placement than
(b). Of course, neither is as good as a placement that does not intersect the line at all, which
would yield zero for LineQuver.

AreaQuer and LineQuver discard much detail — everything but the direction of the poly-
line and the label. However, they can be computed very efficiently. In experiments, a more
elegant metric based on the area of intersection between the label and the polyline proved
to do a slightly better job of evaluating label-line intersections, but at an unacceptably high
cost in efficiency.

Label overlap. Mutually overlapping labels are clearly undesirable. As with the Point-
QOver metric, we simply count the number of overlaps: we define LabelOver to be the number
of overlaps between one selected label position and all others.

It is possible to precompute values for almost all of our metrics prior to position se-
lection. For example, LineQuver can be precomputed for each candidate position without

MERL-TR-96-04 January 1996

_ Penalty 0.41 City Penalty 0.70 City
Penalty 0.63 City @ .)
e Penalty 0.33 City ®
Pendlty 0.44 City, ~ © _ Penalty 0.74 City
. @ Penalty 0.00 City .
Penalty 0.07 City ¢ Penalty 0.67 City
Penalty 0.10 Cit ©Penalty 0.04 City o
y 0. itye ;
. ®Penalty 0.30 City Penalty 0.89 City
Pendty 0.02 City® _ Penalty 0.74 City
L Penalty 0.12 City ®
Penalty 0.37 City ® _ ®
Penalty 0.59 City ~ Penalty 1.00 City

Figure 2: An example of 19 candidate label positions for a point feature and their PointPos
values.

any knowledge of actual selected label positions. The exception to this rule is LabelOver,
which must be recomputed continually during position selection. Fortunately, we are able to
accomplish this reevaluation quickly by precomputing and storing all pairs of intersections
between candidate label positions.

PointOver, LineQuver, AreaQOuver, and LabelOver together comprise all the metrics con-
cerned with spatial contention among labels and symbology. For simplicity, we have not
included metrics for other types of label-symbology overlap, e.g., mountain ranges, vegeta-
tion, etc. However, the introduction of additional overlap metrics is straightforward. We
now turn to metrics that govern the positioning of a label with respect to the feature that
it labels.

4.2 Point-positioning metrics

The sole metric for point-feature labels, PointPos, is determined by a straightforward ranking
of a discrete set of nineteen candidate positions surrounding a point. The actual values used
are illustrated in Figure 2. They are based loosely on Imhof’s well-known guidelines (Imhof,

1962):
o Label positions to the right of a point are preferred to those on the left.
e Labels above a point are preferred to those below.

e The more a label’s baseline is offset from a horizontal line through the center of its
associated point, the less favored it is.

4.3 Line-positioning metrics

Before describing the various line metrics that figure in the evaluation function, we must first
define some useful terms and measures, illustrated in Figure 3. A line feature is represented
as a long, thin polygon. However, we refer to such a polygon as a “polyline” throughout,
since any computation is done with respect to the actual polyline that forms the nearest
side of the line feature’s polygon (whether above or below the label). The baseline of a label

MERL-TR-96-04 January 1996

|
| skyline :
|

I :baseline

swath line

Figure 3: Terminology for line-feature labels. The swath is bounded on the left and right by
the vertical dashed lines.

position is the line upon which the characters are drawn. However, we also take into account
the shape of the text, defining the skyline of a label to be the union of the bounding boxes
of the label’s characters. The skyline extends both above and below the baseline. The ideal
distance § from the baseline of a label to a perfectly straight line feature below it is included
in several of the line-metric formulas. The ideal distance should vary with both the thickness
of the line feature and the type size, so we set § = ascent/4 + thickness/2, where the ascent
is the distance from the baseline to the top of capital letters of the label. The swath is an
infinitely long strip which is perpendicular to the baseline and centered about the label. The
width of the swath is 20% greater than the width of the label. The part of the polyline near
the label that intersects the swath is termed the swath line.

We include five positioning metrics for line-feature labels in our evaluation function. The
first three measure the label’s relationship to the swath line: AveDist and MinDist measure
the average and minimum distance from the label to the swath line; Flatness measures
the degree of curvature of the swath line. The final two metrics measure aspects of the
relationship between the label and the line feature as a whole. Centeredness looks at the
proximity of the label to the center, measured end-to-end, of the line feature. Aboveness
simply indicates whether the label is above or below the line feature. We discuss these
metrics in more detail below.

In the following discussion we will assume we are measuring a label that is above the line
feature. The rules and methods work the same if the label happens to be below the line; we
simply use the other side of the skyline.

Average distance. Positioning a label at an appropriate distance from its line feature is
crucial. To compute a local measure of the average distance d from a label to its associated
line feature, we take the area between the swath line and the lower side of the skyline, then
divide by the width of the swath. The relevant area is shaded darkly in Figure 4.

Next we incorporate the average distance d into a useful metric with the following char-
acteristics. First the metric should yield the optimal measure of 0.0 for an average distance
d, the ideal distance defined above. Next, let the borderline case be an average distance
of either 0.0 or 2§. We choose to let AveDist grow as the square of the deviation from ¢,
since experiment has shown this to work better than a simple linear model. Thus, we arrive
at AveDist = (d — §)*/6%. By way of example, Figure 5 shows 10 label positions with low
AveDist values for a given line feature. The position drawn in bold has the best value of the

MERL-TR-96-04 January 1996

[baseline
|
| |

\\ ‘ swath line

Figure 4: Computing average distance.

o

Figure 5: Label positions with good AveDist values.
10.

Minimum distance. AveDist measures the average distance from a label to its line feature
in the label’s neighborhood. However, due to curvature of the line or descenders in the text,
some feature segments might lie very close to the label, or actually on it, without making
AveDist large. We need a metric to quantify this potential anomaly. A reasonable measure is
the minimum distance d’ between any two points p; on the swath line and p; on the skyline.
Ideally, d’ is the ideal distance §; barely acceptable values are d’ = 0 and d' = 2§. A function
that obtains these values is MinDist = (d' — §)?/6%. However, as we will see in Section 5, we
do not need to consider the MinDist metric explicitly when evaluating a labeling, because
our generation algorithm only creates candidate positions with perfect MinDist values.

Flatness. It is better to locate labels where the associated line feature is relatively flat.
To quantify flatness, we compute the deviation of the swath line from a straight line L that
is parallel to the baseline and offset the ideal distance from it. We sum up the area between
the swath line and L, then divide by the width of the swath. The area sum is shaded darkly
in Figure 6.

Let the quotient — representing the swath line’s deviation from a straight line — be d”. In
the ideal case, d” is zero; we will pick the borderline case to be when d” = §. As with AveDist
and AreaPos, we let Flatness grow as the square of d”. Hence, Flatness = d"* /8. Several
label positions with low Flatness values for a sample line feature are shown in Figure 7. The
lowest-valued position is drawn in bold.

MERL-TR-96-04 January 1996

: swath :
|

| [
| |
6I | |
\/’ swath line . ‘

Figure 6: Computing flatness.

. \Jd
oo

Figure 7: Label positions with good Flatness values.

Aboveness. Consider a horizontal line feature and a label running left to right: the label
may be placed above or below the line. Following Imhof, we prefer labels above the line to
those below. Therefore the metric Aboveness has a value of 0.0 if the position is above, 1.0

if below.

Centeredness. Currently, our heuristics assume that each line feature will have only one
label. Therefore it is important that labels lie near the centers of their associated lines. To
evaluate this quality, we need a global metric Centeredness, which we compute as follows.
We find the point p on the polyline closest to the midpoint of the label baseline. Let [; be
the distance along the polyline from one end to p; let [y be the polyline’s total length. Then
[= 1;/l; ranges from 0.0, if p lies at an end, to 1/2, if p lies in the middle, to 1.0, if p lies at
the other end. The ideal case is when [= 1/2; the borderline case is when [is 0.0 or 1.0. A
suitable metric is thus Centeredness = |20 — 1.

4.4 Area-positioning metrics

Area-specific metrics quantify the relationship between a label position and its area feature.
We will assume that area features are usually large enough to accommodate their labels,
which consist of closely spaced horizontal text. Given this assumption, a single, simple
metric is generally all that is required for satisfactory area-feature labeling. The metric,

MERL-TR-96-04 January 1996

Metric Weight

Overlap metrics (§4.1)

PointOver 10
LineQver 15
AreaOver 10
LabelOver 40

Positioning metrics

Point positioning (§4.2)

PointPos 1
Line positioning (§4.3)

AveDist 1

Flatness 1

MinDist NA

Centeredness 3

Aboveness 0.25
Area positioning (§4.4)

AreaPos 10

Table 1: Metric weights.

AreaPos, measures the proximity of a label to its area’s centroid.? Let ¢ be the distance
from the center of a label position to the centroid of its area feature. In the ideal case,
¢ = 0. Let s be the distance from the area’s centroid to its furthest vertex. We will take the
borderline case to be when ¢ = s. A suitable linear function is therefore AreaPos = ¢/s.

4.5 The overall evaluation function

The overall evaluation function is a weighted sum of the metrics described above for each
label on the map. Suitable values for the weights were created intuitively and refined empir-
ically; they are summarized in Table 1. Notice that the weight given to the MinDist metric
is irrelevant, since the position-generation procedure for line-feature labels (Section 5) is
guaranteed to generate only positions for which the MinDist value is perfect (0.0).

?This metric alone is completely adequate for the sample maps we consider in Section 6. However, it will
clearly not suffice for all area-feature shapes and all position-generation algorithms. If necessary, additional
metrics that are more sensitive to the shape of the area feature, e.g., metrics that encourage alignment with
an area’s medial axis (Ahn and Freeman, 1984), can be incorporated into the evaluation function. We omit
such metrics from this discussion.

MERL-TR-96-04 January 1996

10

5 Position Generation

While we express most of the system’s cartographic knowledge in the evaluation function, it
is clearly helpful for the the generation routines to be created with some knowledge of the
evaluation metrics. We have identified three qualities of a good position-generation method:

1. For efficiency during position selection, the number of generated positions should be
relatively small. For example, in our system, the generation algorithm never provides
more than 32 candidate positions for each feature.

2. The generation method should strike an appropriate balance between efficiency and
quality: identifying only high-quality positions is too expensive and difficult, whereas
naive methods tend to produce too many low-quality candidates. An appropriate
balance can be achieved by keeping the position-evaluation function (Section 4) in
mind when formulating the position-generation procedure.

3. The candidate positions for a given label should occupy a variety of different locations
near its feature in order to give the selection algorithm (Section 3) the opportunity to
exploit tradeoffs between label positions for different features in its quest for a globally
optimal labeling.

Note that it is not important that all the generated positions be of the highest quality,
nor even that the best imaginable position be included. Instead, it is important that the set
of positions includes a variety of locations, even if that requires inclusion of some mediocre
positions. This is in contrast to other systems that first identify a single ideal position for
a feature, and then choose minor perturbations of the position when attempting to resolve
conflicts. Such strategies, by constraining the search space excessively, make the search for
a globally optimal labeling much harder.

We describe position-generation procedures for the three fundamental types of map fea-
tures: points, lines, and areas. These types are not entirely disjoint; for example, line
features can sometimes be best described as area features, as with a river on a large-scale
map. However, this is merely a problem of choosing the most appropriate fundamental type
as a representation, not a new problem in position generation.

5.1 Candidate label positions for point features

Point-feature labels are generated according to the fixed pattern illustrated in Figure 2. In
our implementation, this pattern is parameterized according to several values, including the
radius of the point feature (or its effective radius if noncircular), the size of the label font
with respect to the effective radius, and an overall parameter controlling the “tightness” of
point-feature labels.

The pattern is also augmented with per-letter kerning information kept in a lookup
table. This is essential for optimal placement of candidate positions. For example, consider
the placement of “Penalty 0.00 city” in Figure 2. If the first letter in the label were “T7”, the
label would have been positioned slightly more to the left.

MERL-TR-96-04 January 1996

11

5.2 Candidate label positions for line features

The problem of generating positions for lines is thornier: unlike point features, line features
appear in a rich variety of curves and orientations. We would prefer all candidate positions to
avoid overlapping the features they tag. For point features, we can easily generate candidate
positions that are guaranteed to be valid and of reasonable quality. With line features,
however, we must be slightly more industrious in order to meet this proviso without paying
an unreasonable price in performance.

Our approach is to apply a limited version of our overall generate/select paradigm before
the general label-selection procedure is begun. Here is a summary:

1. Generate many candidate positions without worrying about their validity.

2. Adjust them in simple ways that optimize some of the more easily computed line
metrics.

3. Evaluate them according to all precomputable line metrics.

4. Cull all but the k best positions for some k.

This procedure is clearly efficient, involves no time-consuming search, yet produces a variety
of relatively good positions. Here is a more detailed version of the procedure.

1. Generate multiple positions along the length of the line feature:

(a) Let start be the point at one end of the polyline.
(b) Let inc be one eighth of width, the width of the label.

(c) Repeat until start is less than width from the end of the polyline, measured as
distance along the line:

i. Find a point end on the polyline that is a distance width from start.

ii. Generate two coincident positions with baselines that run from start to end;
mark one “above”, the other “below”.

iil. Increment start by inc.

(At this point, the algorithm will have produced a large number of candidate positions,
none of which will be positioned at a good distance from the line. In fact, most
will intersect the line. However, the next step corrects this problem by applying a
translation.)

2. Adjust all generated candidate positions to achieve the ideal value for the MinDist
metric by applying appropriate translations perpendicular to their baselines. One
position of each pair is moved to a position above the line; the other, below.

3. If a line feature is shorter than its own label, no positions will have been generated in
steps 1-2. If this is the case, pick a point at the center of the line feature and generate
positions as if the given point were a point feature.

MERL-TR-96-04 January 1996

12

Figure 8: Generated label positions for a line feature.

4. Score the generated positions according to all precomputable metrics — everything

but LabelOver.
5. Delete all but the k best positions.

Typically, we use k£ = 32, which is a good compromise allowing a sufficient variety of positions
while not overly expanding the search space. Figure 8 shows a typical line feature labeled
at the best generated position, as well as the skylines of the 15 next-best positions.

5.3 Candidate label positions for area features

For many simple applications (car-navigation systems and the like), area features can be
identified adequately by simple horizontal labels. We utilize the same strategy for areas that
we did for lines: generate a large number of candidate positions, then cull by precomputable
metrics.

Given a polygon P representing the area’s boundary, we find the inset polygon P’ such
that if a label is centered at any point in P’, the label will lie entirely inside P. (If no such
P’ exists, then it is impossible to place a label inside P that does not overlap the boundary
of P. In this case, the area is labeled as if it were a point feature.) We then generate n
(typically 200) quasirandom points evenly distributed throughout P’ using a Sobol’ quasir-
andom sequence (Press et al., 1992).> Candidate positions are generated centered at these
200 points. These positions are scored and all but the best-scoring k positions (again, we
use k = 32) are eliminated.

Figure 9 shows the top 20 generated positions for the label of a given area feature; the
actual label is shown at the most favorable position of the 20.

3The n points are most useful if no two points are close together, because labels for nearby points are
likely to overlap the same features and labels. The Sobol’ quasirandom sequence is well suited for achieving
a dispersed distribution of points.

MERL-TR-96-04 January 1996

13

@®
. Areaféature

Figure 9: Candidate label positions for an area feature.

6 Sample Maps

As evidence that the labeling algorithm that we have presented has the potential to generate
cartographically plausible labelings fully automatically and in reasonable time, we present a
selection of sample maps with randomly generated point, line, and area features as labeled
by our prototype software system. The sample maps exhibit the ability of the algorithm to
trade off the evaluation criteria for point, line, and area features in a reasonable manner.

Figure 10 shows a randomly generated map with 300 point features, 10 line features, and
one area feature. The map was labeled in 20 seconds on a Sun SPARCstation 5. Only two
of the 20 seconds were spent doing position selection.*

Figures 11 through 13 show a typical progression of the position-selection process. Ini-
tially, labels are placed in random locations (Figure 11); in under half a second, most of the
labels are positioned satisfactorily (Figure 12); and in under one second, the final labeling

has been found (Figure 13).

*A more powerful workstation would take less than 10 seconds for the entire computation. Moreover, most
of the time is spent on precomputation that facilitates efficient position evaluation. Several time-consuming
aspects of this precomputation, primarily pairwise intersection testing, use inefficient algorithms that were
selected primarily for their ease of implementation. A commercial-grade implementation on a state-of-the-art
workstation should be able to label maps like the one in Figure 10 in real time.

MERL-TR-96-04 January 1996

14

Resleq ® Stadroprark .Ikaq;%c’hma. Tivepiso® Strikish® eSnurirg ®Osodrortal

. i [}
- X Othodritowng ®New Whowagartarb L o o Stanoflelluville New |poz® .
Snowito® eEshuCity, oQuer0 Slo;holo oFoshife Hapeenut.' a.b?”a"i”e oBraswu - @OYOIS Ny gw%gea‘
Artewu " ono Ca/vu’f‘reg(?wud‘ ° Urb?\‘bx?l:@g\y;bh City®

. /Tlno'karb?\t]%%”&rd «® oSpulloville @ oBrurdaade TYOWIPaLe Fashapstown
Bostravilleg : lquo °
O/ oKreprle oluswa @Paglostofa eQuertoriu o Larartorsvill ® o ga% Pircha® | At
Swopsasovu® \lg Otupro® (. ° Loswetown®
oNew Rinorpo A’é @ New Swetro o Curguzellutown * Roprezonan® /¢v oStiwa

: Iruvoville® Oshifuntown® Slorpaville® 7
Tun.eberdwlle o o New Othiflarba OQ‘ Flnathello® o © Y -
Brojawivarb e L New Storlu® Stovaplatown % eAbriwa
obro °

Ogats® o New Jorchevi Turbofi City ® e Thurgubro (o)
New Zatso o New Aka'New Jorenevi ; i Zahewirch

° Thalepsa® o ISwataville P Krayanilles @ New Atri

Phafe City® /qNew Slarlepsope oThowor PY4:] klrburdarlyll le [) Uthoza® Rortora®

Turdhstrotown Choshoe ® Cotsark oPhashepsi oStrilez @ Snopiyusha Whawalk ® V. Dhohoy(c:)'ytly
c ° archorp City®
o Derkete Arella® OIOFS;:Z,S;:Z. Ichaflatown New Trargoswa® ° Herla felaille®
eAflarerlorl

oNaprelkaspville West Cal‘tog onia Azqﬂ’b’“bwr:ms' Wabriri®

— oNewAvo Coshergert City® 0\0‘9?" eDrospa Briflatez | New Arda®
oConiwur F<):a|‘t)y ° o eThevakirko O Bodae o) Fupraspo®
eWhalloZ phova Tiglutriprig ~ Uchafeglirdvilleg gOlojuville o Pochar Glohotel®

e Fostraspasiorn® Dehisto, eLutsabh Prostirk|| @Swolke
eoPralort City . 0
eUsiville

ew Prate Florgo
New Snuthuqua® Jenif - Nistiph . °
Oshurtasha R, eToyudis Ton_ e* 2 ePragi eNistiphopu

eWirchopso
6‘\0 _Alap?u C|ta\:. !
Tithuowne Stephoglosho® ® Flusiorga City vofrayo® Xo) C eYircha Kreharp City o
Visteq o Chuthorcheroville eOprerch o Aquovoiown Aquobraug Slijagli City @0 s ofiar
Forbatretown® . o Pluroswir City ®" g o Bafrots °
eSlorlo olllorcho New Slengro:)';?a?'?n @ Drezopha e New Stikakich kYefobrefranviIIe Fludﬁm%nats Snofito Roilfcb?ye’vachf%o u
oSt ’ .
New Chorte®*, ® Uquorn® eEranurluch eQuostror ;s

Corargo® Swoslot
. @ Feborbona Chaswo City® ®Kaseswaphe)) ® o Ustl
o

S ®Azolart City Quorgatatmﬁ?:
) ! .

oOsarb oFrihi A eWrehoduro gWharka QY ¢Gluvitown eQuahibh g Sponabo
trivurn

[]
v Briplu City®
Ethoflusres | T)) e Thitsiville pR
2 eoCoste gTrarlorbe New Al Sy owa Zonitalo OM1OVilIE® Queyepsiwoth® ' Tovashi ot e\Wrirturch
Utreboka Cit ® hd ® e Cuzana
Erb . IR Qudosiilleg *°7 NEphortaho ;g ciye °
rbovtown ualosvills Avospiz)
o Kranahig®ashetalki $New Hostristo I c ;d':;:’he oE20 ° ® Whanilloyobh oPharduyuve oFowe
o Uvirdey UshaCi o Staso City L ®Urborkorchtown Noteshaplash Berbuphis®
Ovorb® ~ Flobrothohe® - che @, eVukaglaCity Sinust i Strina
Fliglara K ® Swaslo City e ¢ Grunun @ Jardo hd
oStopokod @ °°'gNew Oka gAyoswarp o New Wharburde Lorde g e >
Elko Drojohospoville® olswo Wara ° Awolkib o Batir Quolligerville® Keflasan
. opi® e Chut i . o Vakatown
o VisSirah JSaerbadu Dargispe [It Nl v Sronrgep Jotode®
) o -
Stradrosnu® lju IQL!J?J:C Grapro! Yotehern @ Sajerovono R eoPlarasa
oUphar

«@Whevoshupo
Jofuparp City ®

(aerarger

° New Ivoruf g
New FrLIJ\‘vosILa\rlgef , Itraprosped
et oEcho sachue

New Oveshola
L]
Prurezosart® Whirkojeguville®

Zaployuville®

e Aperotown
Frathaltown®
o ATgilophtown o New Eville eSherku 9 swora oNew Alanevord
eYilor oflirp® o o Othepergvilleg Tresortotown
Aprifia® Fruchort '@ Strushallo City®
Phirpitown Zuvishe
o [Strephareshatown '

eAlludorl

@Opsawozats
.Yan|W|

eNew Dardo Shajoro®

Swavubevill
® avubeville .Zushe

Figure 10: A randomly generated map labeled by the presented algorithm.

MERL-TR-96-04 January 1996

15

New:L: gjicej abhaplowef.City g

Lispiki d .
Plochorb ISpikaswoog cuiRpyesp City o

’ 0
Wi .
oRiWo mya shufardiy

o N
EIE@r Stopro,
bilsgzrbe Fraq a1 ag
DayRutso Brtrchapdtown. - 11e
o ® .

Wrakoste®
® Thoduglosta Glarguz ®erpo

s/vo@ Whorgo' Frobaurlors ° Petuje City
ork Vuwud® ! Noviva®
A X/t5pik
Whosadrorpg
Ugonog

btk Ciye O Etm%ﬂ%ﬂ‘sb{ﬁ@'

Harlatown ®©9ba
Siiflariwille @ Bophoza Thawlque City

Figure 11: The initial random labeling of a randomly generated map.

4 ®Thaplowef City
. .. NewLagidaa
Lispikaswod, Utsuyadets. Peyesp Cityy
® Plochorb | beti ch Omothl
(1

oRiwo New Swara Shufardi
° FrlLI sgt;af baVO p I ka.%pf:ora(\:/nﬁ./o Ci ty rgg
DayO. ® Brurchapotcywn eyelk Wrgﬁgfslgn.l le
® Thoduglogta ! Rutso o%ﬁ‘r guz
0G0 iropalors g Petuje City
cSN@_Stngork . Novivay
.wadc::adror ey Ugonog
I p Ipso City [
Glorkol gn%b&y SntenaSA/ow lle Aputown
®Snesobut ° 0 ZopoIIaCltyO

eHarlatown @BPMOZ2 Thayique City®
eFliflarluville

Figure 12: The map of Figure 11, halfway through position selection.

New Lajidaia Thaplowef City

Lispikaswod
.PlochorbSp ° uzsuyasas- Peyesp City

o Lapwts
[ot
Riwo® lba'Ch Nev.v SJara Shu:ardi

° FrISIrarba pStopro City®
eOkuga Huwo R, 29k Quaﬂewlle.

Fravino Clty
Dayog ® Rutso®Brurchapotown
°
eThoduglosta Glar guzZee, Wrakosle
Whorgo. e Fropsurlors Petuje City
swozae @ Stri gork oVuwud Noviva®
eAyadra .
Af\lﬁ/hc”sya.d o!pso City
0Sadror| []
:Corbo Pu gonog
ObaSesobubri Snenaswoville® Aputowng

® Glorkolano City Etarbo® ZopoIIaClty'

arl
Sffpuidonn eBophoza Thawique Scity

Figure 13: The final labeling of the map of Figure 11.

MERL-TR-96-04 January 1996

9661 Alenuef

70-96-4L-THHIN

‘popuo)xe AIpeal pue ‘pojuowoiduur Aiseo ‘pourejdxo Ajduwirs st 41 — 2791559000 @

isanyes) popge[00¢ 03 dn yym sdew
Pozis-uaa1ds 10 -oGed I0J owil} [eal Ieau ur paysijdurodsoe st juowede[d X0} — Juawffa e

sdewr gurpeadde Afpensia ‘poeduwrod seonpoid 41 — 2a1793(f5 e

A8o[opoyjewr paylun e SUISN Pa[oqe[2l SoInjes) vale pue ‘aul] ‘yutod — jpuaualb e

IST Jeq) WylIode sutjeqe[olyderdolred e pajuasald AR 9A\

MJIOAA odning pue suolsnjouo)) 2

"SoInjeaJ 959y} JO uorjorILUI o) Aq pajuesard sjureljsuod 348} oy} Jopun Jurfaqe] a[qisne[d
B pUy 0} WY}LIOS[e 2] Jo A}I[IqR oY) SMOYS PUR ‘SoInjea] voIe pue oul[A[3sowr surejuod dew

Iy ‘(0] @31 ur dew oy} 0} JseIJUOD U] “F[2In3I] ul umoys st dewr Jo odAy JusIoyIp v

Dreshofuspi Street

Evu St.

TEIX3

Dofa Way

Togle Street

‘solnjeo] kol puUR oUIT [iim deur wopuel v [@.HSWWM

199.1S ejalds

LT UX3

“Ads
3 ogn gbm_\m,

19811S 0gIY
19918 1O
H ouy Kepn ysojsod QDV__OM YlON
15 tlenby e/
g =
= 18313 a|denbins | gz uxg - -
5 . peoudeieidel g i
> <, - 1991S eAo|d e & g g
2 a9 g = T 10a41S oqune 2 =5
2 e & S ® &@O&QJ&D TZ IX] i 5 = %
=1 =
= 2 o =) e, % S anuany sedjel
ol £ 5 .m 3) H 3 PA osTepUoysig = V Stued
2 c 8) Z ;. m |
o) - a =
Q =3 ensjnog olise
diysumo| adiye 5 5| | PR
M 1931S IO £ 0O =)
[a
> m & = aueT aynidakons &
> < o
= 3 o S 19941S NSO | | g yxg =
. 2 320 A i S
= 22 23 O%Y 19015 Z i
=l o] = m W = a
° m g o 8 = ,/hv_\O?, wons snarebnd g g N
d S B'a & f=) I £ &
19848 |eydoelD | Bl glig & AR N«
o) al-Shra z = 5 B
5| § @ = sieensedoysig = 5 £
8 0 o o O 5 5 & o > B
ol 8 o & N = pfersinog }insoiq § > C o g
255248 !a 48 s é
ens|nog JIyoyso:
prensinog Jiyoysoxi| & W m 2 £ qnmsepn U_AN n m.
< o © < 192.11S qeyosayd S
UMO]0|0J0|D N m 1S GeUOS3LYO0 m m
o O S 1S ysozopeunig | @ ?
@ > 2 2
@ 190415 odnus m 3
fo)) o
& 199.S oidelemo | i X3

€T IX3

nx3

91

17

Our implementation of the algorithm illustrates the advantages to be gained from a frame-
work in which cartographic knowledge is summarized numerically in a scoring function that
is then optimized by powerful heuristic search techniques.

While we believe this framework to be far superior to previous approaches that are based
on expert-system production rules and depth-first search, we do not claim that the specific
algorithm described here cannot be improved. For example, the following problems warrant
attention:

o Disambiguation: Our current scoring function classifies the interaction between each
label and feature as either overlapping or nonoverlapping. However, more subtlety is
necessary to identify candidate positions that do not overlap features, but that come
close enough to cause some degree of ambiguous association.

o Selectivity: A useful option in labeling dense maps is to allow for (occasional) deletion
of certain labels or even the features themselves in areas of congestion. Automation
of this selection process has already been shown to be feasible in the context of point-
feature label placement (Langran and Poiker, 1986; Christensen, Marks, and Shieber,
1995).

o Frpressivity: Candidate position suggestion should allow for greater expressivity. For
instance, horizontal labels are not ideal for all area features, curved labels may be
better for some line and area features, and long linear features should allow for multiple
occurrences of the label and for distribution of multi-word labels along the length of
the feature.

These problems present no conceptual barrier for an algorithm as flexible as the one outlined
here. We anticipate that these problems and others can be addressed by improved generation
procedures and evaluation metrics that we are currently developing.

8 Acknowledgments

Much of the work described in this paper was done while Edmondson and Christensen were at
Harvard University, and Marks was at Digital Equipment Corporation’s Cambridge Research
Lab. This research was supported in part by Grant Number IRI-9350192 from the National
Science Foundation, and by grants from Digital Equipment Corporation, Xerox Corporation,
and Mitsubishi Electric Research Laboratories.

References

Ahn, John and Herbert Freeman. 1984. A program for automatic name placement. Carto-
graphica, 21(2-3):101-109, Summer—Autumn.

Originally published in Proceedings of the Sizth International Symposium on Automated
Cartography (Auto-Carto Siz), Ottawa/Hull, October 1983.

MERL-TR-96-04 January 1996

18

Christensen, Jon, Joe Marks, and Stuart Shieber. 1993. Algorithms for cartographic label
placement. In Gary G. Kelly, editor, Proceedings of the American Congress on Surveying
and Mapping 93, Vol. 1, pages 75-89, New Orleans, Louisiana, February.

Christensen, Jon, Joe Marks, and Stuart Shieber. 1995. An empirical study of algorithms
for point-feature label placement. ACM Transactions on Graphics, 14(3):203-232, July.

Doerschler, Jeffrey S. and Herbert Freeman. 1992. A rule-based system for dense-map name
placement. Communications of the Association for Computing Machinery, 35(1):68-79,
January.

Ebinger, Lee R. and Ann M. Goulette. 1990. Noninteractive automated names placement for
the 1990 decennial census. Cartography and Geographic Information Systems, 17(1):69—
78, January.

Feigenbaum, Mitchell. 1994. Method and apparatus for automatically generating symbol
images against a background image without collision utilizing distance-dependent attrac-
tive and repulsive forces in a computer simulation. U.S. Patent #5,355,314, filed 11/5/93,
and granted 10/11/94. Assigned to Hammond Inc., Maplewood, New Jersey, October.

Hirsch, Stephen A. 1982. An algorithm for automatic name placement around point data.

The American Cartographer, 9(1):5-17.

Imhof, Eduard. 1962. Die Anordnung der Namen in der Karte. International Yearbook of
Cartography, 2:93-129.

Jones, Christopher B. 1989. Cartographic name placement with Prolog. [EEE Computer
Graphics and Applications, 9(5):36-47, September.

Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi. 1983. Optimization by simulated
annealing. Science, 220:671-680.

Langran, Gail E. and Thomas K. Poiker. 1986. Integration of name selection and name
placement. In Proceedings of the Second International Symposium on Spatial Data Han-
dling, pages 50-64, Seattle, Washington, July. International Geographical Union and
International Cartographic Association.

Press, William, Saul Teukolsky, William Vetterling, and Brian Flannery. 1992. Numerical
Recipes in C. Cambridge University Press, Cambridge, England.

Zoraster, Steven. 1986. Integer programming applied to the map label placement problem.

Cartographica, 23(3):16-27.

Zoraster, Steven. 1990. The solution of large 0-1 integer programming problems encountered
in automated cartography. Operations Research, 38(5):752-759, September-October.

Zoraster, Steven. 1991. Expert systems and the map label placement problem. Cartograph-
ica, 28(1):1-9, Spring.

MERL-TR-96-04 January 1996

	Title Page
	Title Page
	page 2

	A General Cartographic Labeling Algorithm
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19

