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Abstract

We want to estimate the pose of human heads. This estimation involves a nonlinear mapping
from the input image to an output parametric description. We characterize the mapping through
examples from a training set, outputting the pose of the nearest example neighbor of the input.
This is vector quantization, with the modification that we store an output parameter code with
each quantized input code. For efficient indexing, we use a tree-structured vector quantizer
(TSVQ). We make design choices based on the example application of monitoring an automobile
driveŕs face. The reliance on stored data over computation power allows the system to be simple;
efficient organization of the data allows it to be fast. We incorporate tracking in position and scale
within the same vector quantization framework with virtually no cost in added computation.
We show reasonable experimental results for a real-time prototype running on an inexpensive
workstation.
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1 Abstract

We want to estimate the pose of human heads. This
estimation involves a nonlinear mapping from the in-
put image to an output parametric description. We
characterize the mapping through examples from a
training set, outputting the pose of the nearest ex-
ample neighbor of the input. This is vector quanti-
zation, with the modi�cation that we store an out-
put parameter code with each quantized input code.
For e�cient indexing, we use a tree-structured vector
quantizer (TSVQ).
We make design choices based on the example ap-

plication of monitoring an automobile driver's face.
The reliance on stored data over computation power
allows the system to be simple; e�cient organiza-
tion of the data allows it to be fast. We incorporate
tracking in position and scale within the same vec-
tor quantization framework with virtually no cost in
added computation. We show reasonable experimen-
tal results for a real-time prototype running on an
inexpensive workstation.

2 Motivation

We are interested in the general problem of analyzing
people in images. We focus on a speci�c application:
monitoring the position and orientation of a driver's
face, viewed from inside the car. The goal of such
monitoring is highway safety; most tra�c fatalities
are caused by driver errors, and cars could become
safer if they are able to monitor the state of awareness
of the driver [6].
This particular problem imposes many restrictions

which challenge the algorithm designer. The algo-
rithm must be robust to changes in person, appear-
ance, and lighting, and the head position will be ini-
tially unknown. The algorithm should be fast, con-
tinuously updating the estimated pose approximately
every 100 msec. To achieve mass-market sales, it
must be very low-cost.
Present head tracking systems do not meet these

restrictions. Many rely on the assumption of small
head motions [8, 10, 11, 15, 20, 22] or require too
much processing power [2] for the low-cost, real-time
application we have in mind. The methods used are
predominantly based on templates [7, 18], feature
tracking [1], or optical 
ow [2, 3, 5, 20, 22].
We have built a system based on tree structured

vector quantization (TSVQ) which may meet the cost
and speed restrictions for the driving application. We

have written and studied a real-time prototype on an
SGI Indy workstation.

3 Mapping Inputs to Outputs

We want to learn a non-linear mapping from the
input image, x, to the output model parameters,
y. Recovering closed-form parametric solutions from
�rst principles is unmanagable. For input spaces with
complex structure, however, learning the mapping
from inputs to outputs is more tractable. This has
been applied to complex input spaces in problems of
face detection and recognition [14, 19] and to pose
estimation for simple �gures [17, 16].
Learning the mapping from inputs x to outputs y

requires a training set of example pairs (xi;yi) that
represent typical mappings. To obtain these map-
pings, two solutions are natural: (1) obtaining real
input-output mappings, for example, by capturing
image data x while capturing pose parameters y; (2)
obtaining synthetic input-output mappings by con-
structing a synthesizer which outputs images for a
particular parametric description y. For this work,
we have used the �rst approach.
Given training data, the challenge is to summa-

rize the samples so that a new example x whose
output code y is unknown can be estimated. Es-
timation techniques can be either parametric or non-
parametric. Parametric techniques assume an input-
output mapping of some form y = f(w;x), where
the task is to estimate the parameters w. Paramet-
ric techniques are practical when the dimensionality
of the inputs x and parameters w is small, when the
number of weights is small, and when the parametric
form is roughly powerful enough to handle. For the
complexities of human body pose initialization, these
conditions may not be met.
Non-parametric estimation techniques include

nearest neighbor (NN) estimation techniques, and
use techniques closely related to vector quantization
[9]. In NN techniques, k codes mj = [xj;yj ]; j =
1; : : : ; k express the input-output mapping simply.
Estimation is done by �nding the nearest input given
a distance metric D(x1;x2):

j
� = arg min

j=1;:::;k
D(x;xj)

. The output is just the output component of the
code vector mj� :

y = moj�

. Variants include choosing not the output for the
nearest neighbor, but more generally some combina-
tion of the outputs of the K-nearest codes.
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Figure 1: Left: Tree structured vector quan-
tization (TSVQ), and, Right: our simple ex-
tension to it. In traditional VQ, many ex-
ample inputs, (e.g., the images, x), are quan-
tized to a smaller set of possible values. For
e�cient indexing, TSVQ the quantized input
values into a tree. At the right, we add an
output code (the model parameter, y) to each
VQ quantized input code. Again, for e�cient
storage, we can organize the quantized codes
into a tree. Each leaf node contains an in-
put/output x, y pair.

The distance metric is often Euclidean:

D(a;b) = (a� b)T (a� b)

. We might anticipate some large outlier images to
those in our database and can use a robust error mea-
sure instead [4].
NN classi�cation is closely related to vector quan-

tization (VQ): given a set of N dimensional inputs
xi, produce a mapping onto one of k codes. The
only di�erence is that the output is a not a code j,
but a vector y.
Learning the codes mj is possible via a variety of

approaches. One extreme solution is to do no learn-
ing at all - and just use the entire training set (xi;yi)
of Q examples to form the k codes mj, where k = Q.
When Q is large, one must e�ciently index into the
large training set. (One can reduce the number of
codes by clustering similar points into a common
code [9]).
To reduce indexing costs, the data can be orga-

nized into a tree, shown in Figure 1. This technique
of organizing codes is known as tree-structured vec-
tor quantization (TSVQ). At each node in the tree,
a code is stored. Each node has a �xed number of
children nodes, also with codes. In binary tree struc-
tured VQ, each node has 2 children. Indexing in-
volves recursively choosing the child node which has
the nearest code, until a leaf is reached. For our
estimation problem, this yields an output code yi.
This maintains a storage cost on the order of Q but
reduces the indexing cost to log(Q).
Techniques to build tree-structured codebooks are

intuitively easy to construct, and all naturally follow
a recursive form. Consider binary TSVQ. Given a
set of examples (xi;yi), the simplest procedure is to
split the examples into two piles. k-means cluster-
ing, where k = 2 might be used. Alternatively, more
robustly, PCA can be used to �nd the direction of
maximal variation (c.f. [21]). This is what we used,

direction of
maximal variation
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Figure 2: Binary tree-structured vector
quantizers can be generated from a dataset by
repeatedly: (a) computing the direction e1 of
maximal variation of the dataset; (b) project-
ing each datapoint xi onto the weight w = eT1 ;
(c) assigning each datapoint to the one of
two children depending on whether w > 0 or
w < 0.

basing the principle component direction on that of a
subsampling of all the example points, see Figure 2.
Given a split of examples into two piles, each of those
piles can be split, and then each of piles from those
splits, etc. until the pile is too small for PCA or clus-
tering to be applied, and table lookup makes sense
instead.

4 Application: Head Pose
Determination

We address the particular problem of tracking the
position and pose of a driver's head in an auto-
mobile. We assume the camera is close enough to
the face that we may use very low resolution im-
ages. The memory-intensive, computationally sim-
ple TSVQ approach is well suited to this particular
problem, which requires fast, low-cost processing to
be commercially successful.
To test the feasibility of this approach, we made a

laboratory prototype of an automobile head tracker,
using an SGI Indy workstation and 40� 30 resolution
imagery.

4.1 Acquisition of training data

We took images of 11 di�erent subjects, in 15 di�er-
ent head poses each. We set 15 numbered markers
on the wall, in a 3�5 grid, spaced 20� apart horizon-
tally and 30� vertically. Inconsistant head poses in
the training data can lead to a mis-classi�cation of
pose. (Of course, in the testing phase, the head pose
is unconstrained, but it must be referenced back to
the training poses at calibrated positions). Without
physically constraining apparatus, it was di�cult to
obtain data for a calibrated set of head orientations.
The approach we used was to seat the subject in a
swivel chair, and instruct them to \point their chin"
at each of a set of the 15 numbers. The swivel chair
allowed fairly accurate control of the azimuthal head
angle; subjects rotated the chair so that they faced
each number squarely. Subjects were less consistant
at head tilt. The photographer coached each subject
to try to achieve a consistant amount of head tilt
across subjects. Figure 3 shows a sampling of the
resulting training set of 11� 15 images.
We describe below our method to accomodate

changes in the user's head position, but it requires
training data at initially consistant head positions.



We put the training set into registration by shift-
ing them so that the nose positions, identi�ed with a
mouse by an observer, coincided.

Figure 3: Samples of training images in the
data set. 11 di�erent people were used, each
photographed at 15 di�erent head orienta-
tions.

4.2 Head Tracking

For the pixel-wise comparisons between images to be
meaningful, the test and training data must be pre-
cisely aligned. One could achieve this through several
standard image processing techniques (e.g. [13, 12]),
although at additional computational cost. An ad-
vantage of the TSVQ approach is that we can in-
corporate head tracking over position and scale in a
very natural way. For each head in our data base, we
generate synthetic examples (c.f. [3]) of the head at
shifted horizontal and vertical positions, and scale.
During run-time operation, if the head matches an
example with a spatial o�set, we simply adjust the
cropping o�set of a window around the head in an
image until the head matches a centered example, as
illustrated in Figure 4. This allowed us to use a tight,
elliptical cropping window around each person's face,
to minimize the in
uence of varying backgrounds.
The shift of the position of the cropping window

is essentially a cost-free operation. An extra two
images to accomodate a shift in each dimension of
scale, horizontal, and vertical position increases the
image storage requirements by a factor of 7. We thus
achieve position tracking of the head at a cost of
log

2
(7) � 3 additional image comparisons. Track-

ing in scale would involve the extra run-time cost of
a bilinear image interpolation to stretch or squash
the input image in scale.

4.3 Memory requirements

We can calculate the memory requirements of our
prototype system. 11 heads � 15 poses � 7 images
for tracking in position and scale � 40 � 30 pixels
per image � 1 byte per pixel requires 1.4Mb storage
for our prototype dataset.
A system to be installed in an automobile would

require more data, although that could be o�set by
some additional care in data storage. One may need
25 subjects, each under perhaps 4 di�erent lighting
conditions. (We have yet to study the performance
characteristics under variations in lighting). How-
ever, the actual cropped heads in our images were
smaller than the full 40 by 30 image size; they were
roughly 16�16 pixels. This gives a dataset storage
size of, in the same order as above: 25 � 4 � 15 � 7

� 16 � 16 � 1 = 2.6Mb. This memory requirement
is consistent with a low-cost system at today's prices.

Detector Database
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Figure 4: Head tracking method which is in-
tegrated with the main image matching loop.
After training, we generate synthetic exam-
ples of spatially shifted (or shifted in scale)
heads. If the best match to the input image
is to one of the o�set (or scale shifted) exam-
ples, we know to adjust the cropping window
o�sets until the best match head is one in a
centered head position (not scale shifted).

4.4 Prototype performance results

With our calibrated training data, we evaluated
the performance of the nearest neighbor method for
tracking head pose, using a leave-one-out procedure.
For each person in the training set, we removed their
images from the training set and found the pose of
the nearest neighbor head image. We did that for all
poses and all people in the training set. The nearest
neighbor method found the exact head pose 48% of
the time. It found approximate pose (within one step
horizontally or vertically) 87% of the time.
In our real-time system, we implemented left-right

head tracking, as described in Section 4.2. This
worked well to maintain the head centered within
the cropping window.
To qualitatively evaluate the performance of our

real-time set-up, we displayed the input camera im-
age, the cropped image of the user's head, and the
closest-match input code image, corresponding in
our case to the head of the training set which had
the smallest (robust) distance from the input image.
These frames update on the SGI Indy in real-time at
11 frames per second.
We tested the system on people who were not in

the training set. The identity of the closest match
head constantly changed, but the pose of the best
match generally matched well with the pose of the
input image. Figure 5 is a random sampling of the
system matches. The results are not perfect, but they
are reasonable, showing that the TSVQ method can
successfully initialize the pose of a human head from
low-resolution images. Possible approaches to im-
proving the results may include exploiting temporal
consistancy constraints in the matches, or expanding
the database of training images.

5 Summary

We have presented a simple approach to identify pose
parameters associated with views of an object. Be-



cause of the high degree of nonlinearity of the map-
ping of input images to output parameters, we chose
a non-parametric approach, based on tree structured
vector quantization (TSVQ). As in standard TSVQ,
we clustered and quantized the input vectors; to
record the image to pose mappings, we also stored
an output code with each quantized vector. The tree
structuring allows for e�cient indexing into the large
dataset of training images. The system handles the
nonlinear pose initialization problem, although the
resulting system can be used as a tracker, as well.
We applied this approach to tracking the pose of

the head. We made design choices based on a par-
ticular application of this problem, monitoring the
position of automobile driver's face (toward the ul-
timate goal of monitoring driver awareness). We
implemented a real-time prototype of this system,
which achieved reasonable performance in monitor-
ing the head pose of people not in the training set,
at 11 frames per second. The TSVQ approach allows
the computational burden to be very low, in e�ect
trading memory for computation. Since the mem-
ory access is structured e�ciently, one can build a
fast and useful system using modest computational
hardware.
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Figure 5: Screen display of our prototype
system, illustrating its performance. The raw
camera image is on the left. At right, two
heads are displayed. The left one is the cen-
tered (by the memory-based tracking) and
cropped face from the camera. The right one
is the leaf node of the VQ tree which most
closely matches the input image. The matches
occur at 11 per second, these single frames
digitized from a videotape are random draws
from the set of matches made by the system.
A few matches correspond to erroneous head
poses, but most matches are in good agree-
ment with the head pose of the input image
(not in the training set).

Figure 6: Continuation of �gure at left.
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