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Abstract

Image rendering maps scene parameters to output pixel values; animation maps motion-control
parameters to trajectory values. Because these mapping functions are usually multidimensional,
nonlinear, and discontinuous, finding input parameters that yield desirable output values is often
a painful process of manual tweaking. Interactive evolution and inverse design are two general
methodologies for computer-assisted parameter setting in which the computer plays a promi-
nent role. In this paper we present another such methodology. Design Gallery (DG) interfaces
present the user with the broadest selection, automatically generated and organized, of percep-
tually different graphics or animations that can be produced by varying a given input-parameter
vector. The principal technical challenges posed by the DG approach are *dispersion*, find-
ing a set of input-parameter vectors that optimally disperses the resulting output-value vectors,
and *arrangement*, organizing the resulting graphics for easy and intuitive browsing by the
user. We describe the use of DG interfaces for several parameter-setting problems: light se-
lection and placement for image rendering, both standard and image-based; opacity and color
transfer-function specification for volume rendering; and motion control for particle-system and
articulated-figure animation.
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Abstract

Image rendering maps scene parameters to output pixel values; animation
maps motion-control parameters to trajectory values. Because these mapping
functions are usually multidimensional, nonlinear, and discontinuous, finding
input parameters that yield desirable output values is often a painful process
of manual tweaking. Interactive evolution and inverse design are two general
methodologies for computer-assisted parameter setting in which the computer
plays a prominent role. In this paper we present another such methodology.
Design GalleryT™ (DG) interfaces present the user with the broadest selection,
automatically generated and organized, of perceptually different graphics or
animations that can be produced by varying a given input-parameter vector.
The principal technical challenges posed by the DG approach are dispersion,
finding a set of input-parameter vectors that optimally disperses the resulting
output-value vectors, and arrangement, organizing the resulting graphics for
easy and intuitive browsing by the user. We describe the use of DG interfaces
for several parameter-setting problems: light selection and placement for image
rendering, both standard and image-based; opacity and color transfer-function
specification for volume rendering; and motion control for particle-system and
articulated-figure animation.
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1 Introduction

Parameter tweaking is one of the vexations of computer graphics. Finding input param-
eters that yield a desirable output is difficult and tedious for many rendering, modeling,
and motion-control processes. The notion of having the computer assist actively in setting
parameters is therefore appealing. One such computer-assisted methodology is interactive
evolution [11, 21, 23]: the computer explores the space of possible parameter settings, and
the user acts as an objective-function oracle, interactively selecting computer-suggested al-
ternatives for further exploration. A more automatic methodology is inverse design, e.g.,
[10, 12, 14, 19, 22, 25, 27]: the computer searches for parameter settings that optimize a
user-supplied, mathematically stated objective function.

Unfortunately, there are many interesting and important graphics processes for which
interactive evolution and inverse design are not very useful. These processes share two
common characteristics:

e High computational cost: if the process cannot be computed in near real time, inter-
active evolution becomes unusable.

e Unquantifiable output qualities: even though desirable graphics may be readily iden-
tified by inspection, it may not be possible to quantify a priori the qualities that make
them desirable. This lack of a suitable objective function rules out the use of inverse
design.

In this paper we present a third methodology for computer-assisted parameter setting
that is especially applicable to graphics processes that exhibit one or both of these char-
acteristics. Design Gallery (DG) interfaces present the user with the broadest selection,
automatically generated and organized, of perceptually different graphics or animations that
can be produced by varying a given input-parameter vector. Because the selection is gener-
ated automatically, it can be done as a preprocess so that any high computational costs are
hidden from the user. Furthermore, the DG approach requires only a measure of similarity
between graphics, which can often be quantified even when optimality cannot.

A DG system includes several key elements. The input vector is a list of parameters that
control the generation of the output graphic via a mapping process. The output vector is
a list of values that summarizes the subjectively relevant qualities of the output graphic.
The distance metric on the space of output vectors approximates the perceptual similarity
of the corresponding output graphics. The dispersion method is used to find a set of input
vectors that map to a well-distributed set of output vectors, and hence output graphics. The
dispersed graphics are presented to the user through a perceptually reasonable arrangement
method that makes use of the distance metric. These six elements — input vector, mapping,
output vector, distance metric, dispersion, and arrangement — characterize a DG system.
The creator of a DG system chooses the input vector, output vector, and the distance metric
for a specific mapping process. For particular instances of the process, the computer performs
the dispersion, the mapping of input vectors to output vectors, and the arrangement of final
graphics in a gallery. The end user need only recognize and select appealing graphics from
the gallery.
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We explain and illustrate the use of DGs for several common parameter-setting prob-
lems: light selection and placement for image rendering, both standard and image-based;
opacity and color transfer-function specification for volume rendering; and motion control for
particle-system and articulated-figure animation. During the discussion, we describe the in-
put and output vectors for each mapping process, and present various methods for dispersion
and arrangement that we have used in building DG systems.

2 Light Selection and Placement

Setting lighting parameters is an essential precursor to image rendering. Previous attempts
at computer-assisted lighting specification have used inverse design. For example, the user
can specify the location of highlights and shadows in the image [15], pixel intensities [19], or
subjective impressions of illumination [10]; the computer then attempts to determine lighting
parameters that best meet the given objectives, using geometric [15] or optimization [10, 19]
techniques. Unfortunately, the formulation of lighting specification as an inverse problem
has some significant drawbacks. High-quality image rendering (e.g., raytracing or radiosity)
is costly; to make the computer’s search task tractable, the user may have to fix the light
positions [10, 19], thereby grossly limiting the illuminations that can be considered. A more
intrinsic difficulty is that of requiring the user to quantify a priori the desired illuminative
characteristics of the resulting image. This requirement may be satisfiable in an architectural
context [10], but seems very challenging in a more general cinematographic context [8]. The
most difficult lighting parameters to set are those relating to light type and placement, so
they have been the focus of our efforts.

2.1 Input and Output Vectors

For the light selection and placement problem, we begin with a scene model comprising
surfaces and viewing parameters. The goal is to explore different ways of lighting the scene,
so the input vector includes a light position, a light type, and a light direction if needed. The
light position is located somewhere on one of the surfaces distinguished as a light hook surface
by the user. The light type comes from a user-defined group, and describes attributes of the
light: its basic class (e.g., point, area, or spotlight); whether or not it casts shadows; its falloff
behavior (e.g., none, linear, or quadratic); and class-specific parameters (e.g., the beam angle
of a spotlight). Directional lights are aimed at randomly chosen points on designated light
target surfaces.

The output vector should be a concise, efficiently computed set of values that summa-
rizes the perceptual qualities of the final image. Thus, output vectors are based on pixel
luminances from several low-resolution thumbnail images (32 x 25 pixels and smaller). The
luminances at resolution p are weighted by a factor f(p). The distance metric on the output
vector is the standard L' (Manhattan) distance. As a result, the distance between output
vectors corresponding to images g and r is

> Zf NYS (2, y) = Y (2, y)) (1)

06{17167162 I }
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where Y(z,y) is the luminance of the pixel at location (z,y) in image ¢ at resolution p.!

2.2 Dispersion

The dispersion phase selects an appropriate subset of input vectors from a random sample
over the input space. Specifically, T' lights are generated at each of H positions distributed
uniformly over the light hook surfaces. This procedure yields a set L of H x T" input vectors.
Typical values are H = 500 and 7' = 8, in which case |L| = 4000.> For each input vector in
L, thumbnail images are generated, and the corresponding output vector is determined as
described above. The dispersion algorithm outlined in Figure 1 then finds a set I C L with
good spread among output vectors. The first step is the elimination of lights that dimly
illuminate the visible part of the scene, because they are obscured or point away from the
scene geometry; these lights are unlikely to be of interest to the user and can confound the
rest of the dispersion process. Thumbnail images whose average luminance is less than a
cutoff factor ¢ are eliminated from the set L. (Typical useful values of ¢ are in the range
1%-5% of the maximum luminance value.) The subset [ is assembled by repeatedly adding
to I the light in L whose output vector is most different from its closest match in the nascent
I. The size of I is determined by the interface, as described below; |I| = 584 for the examples
we discuss in the paper.

2.3 Arrangement

We would like the set of lights I to be large, so that the user will have many complementary
lights from which to choose. However, the greater the size of I, the more difficult it will be for
the user to browse the lights effectively. We accommodate these contradictory requirements
by arranging the set [ in a fully balanced hierarchy in which lights that produce similar
illumination effects are grouped together. We accomplish this goal of the arrangement phase
by graph partitioning. A complete graph is formed in which the vertices correspond to
the lights in I, and edge costs are given by the inverse of the distance metric used in the
dispersion phase. An optimal w-way partition of this graph would comprise w disjoint vertex
subsets of equal cardinality such that the cost of the cut set, the total cost of all edges that
connect vertices in different subsets, is minimized. Optimal graph partitioning is NP-hard
[4], but many good heuristics have been developed for this problem [1]. Our partitioning
code is based on an algorithm and software developed by Karypis and Kumar [9]. Once
the initial w-way partition is formed, representative lights for each partition are selected,
and installed in the hierarchy. The partitioned subsets, minus their representative vertices,

1Since we start with a low-resolution thumbnail, the filtered images of even lower resolution called for in the
expression will be truly tiny. Nevertheless, they do contain useful information: two barely nonoverlapping
narrow-beam spotlights will generate a high (and somewhat misleading) difference score at the highest
resolution, but smaller, more appropriate difference scores at lower resolutions because the beams will overlap
in the lower-resolution images. The effect of the weighting function f(p) is subtle, but we have found it
preferable to weight higher-resolution images slightly more than lower-resolution ones.

?We picked these numbers to allow overnight batch processing of the entire DG process for one scene on
a single MIPS R10000 processor.
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are then processed recursively until a hierarchy with branching factor w and height % is
completed.

The values for w and h are dictated by the user interface, whose structure is depicted in
Figure 2, and actual examples of which are shown in Figures 9-11. For each light in the final
set [, medium-size (128 x 100 pixels) and full-size (512 x 400 pixels) images are generated
for use in the interface. The user is presented with a row of eight images that serve as the
first level of the light hierarchy. Clicking on one of these images causes its eight children
in the hierarchy to be presented in the next row of images. The third and final level in
the hierarchy is accessed by clicking on an image from the second row. Thus w = 8 and
h = 3. In turn, these parameters determine the cardinality of I: |I| = 2?21 w’ = 584. This
particular interface provides additional application-specific functionality that exploits the
additive nature of light [6]. Images can be dragged to the palette, where light intensity and
temperature can be varied interactively. Multiple images are composited to form a full-size
image in the lower left.

2.4 Results

The DG in Figure 9 contains a scene inspired by an example from [8]. The floor, ceiling, and
all four walls (only the rear one is visible) were designated light-hook surfaces. The surfaces
comprising the figures were designated light-target surfaces, as was the back wall. The 584
lights in the gallery were selected from 5,000 randomly generated lights in the dispersion
phase. The cost of computing this and the other light-selection-and-placement DGs shown
here was dominated by the cost of raytracing the 584 full-size images used in the display,
which took approximately five hours on a MIPS R10000 processor.

Figure 10 contains a scene with richer geometry. The ceiling, and the area around the
base of the statue were designated light-hook surfaces. The surfaces of the two heads, the
doors, the tree, and the statue were designated light-target surfaces. The gallery lights were
selected from 3,000 randomly generated lights in the dispersion phase.

Finally, Figure 11 shows a DG for synthetic lighting of a photograph (inset at lower
right). A point- and line-based 3D model is extracted from a triplet of scene images, each
taken from a different viewpoint. This reconstruction process is completely automatic, as
described in [2]. Points and lines are then aggregated semi-automatically into planes. An
illumination of the final recovered model is used to modulate intensity in one of the original
photographs.

3 Opacity and Color Transfer Functions for Volume
Rendering

Choosing the opacity and color transfer functions for volume rendering is another tedious
and difficult manual task amenable to a DG approach.”> We developed DG interfaces for two
data sets: the simulated electron density of a protein, and a CT scan of a human pelvis.

3The application of both interactive evolution and inverse design to this problem is the subject of [7].
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3.1 Input and Output Vectors

The protein data set contains values in the interval [0,255]. The opacity transfer function
over this domain is parameterized by a polyline with eight control points, for a total of 16
values. The polyline is low-pass filtered before it is used. The color transfer function is
parameterized by five values that segment the data into six subranges, which are arbitrarily
assigned the colors red, yellow, green, cyan, blue, and magenta. Thus color is being used
only to identify subranges of the data, and not to convey any quantitative relations among
the data. Figure 3 illustrates a sample opacity and color transfer function. The complete
input vector comprises 23 parameters.

For the scene-lighting DG, the output vector contains approximately 850 weighted pixel
luminances. This kind of resolution is necessary because lights can cause completely local
illumination effects in a synthetically rendered image, effects that should be representable in
the output vector. In comparison, changes to transfer functions will generally affect many
pixels throughout a volume-rendered image. We can take advantage of this homogeneity
by including only a handful of pixels in the output vector. Currently we use eight pixels,
selected manually for each data set. Representing all of their YUV values requires 24 values
in the output vector, and standard Euclidean distance is used as the output-space metric.
Dispersion on the basis of eight pixels from different parts of the image produces excellent
dispersion of complete images at a much reduced computational cost.

3.2 Dispersion

The dispersion heuristic in Figure 1 works by distilling a set of randomly generated input
vectors down to a well-dispersed subset. Although simple, this method has the drawback of
not utilizing what is learned via random sampling about the mapping from input to output
vectors. In contrast, the dispersion heuristic in Figure 4 uses an evolutionary strategy that
adapts its sampling over time in response to what it implicitly learns, and consequently
performs much better. It starts with an initial set of random input vectors. These vectors
are then perturbed randomly. Perturbed vectors are substituted for existing vectors in the set
if the substitution improves dispersion. The key notion of dispersion used is nearest-neighbor
distance in the space of output vectors.

3.3 Arrangement

The arrangement method based on graph partitioning that is presented in §2.3 results in a
simple and easy-to-use interface. Unfortunately, sometimes the partition contains anoma-
lies, e.g., dissimilar lights placed in the same subset of the partition. This problem is due
to limitations of the partitioning method (no heuristic partitioning strategy guarantees an
optimal partition), and to the structure of the set of output vectors, which may not map
well to any regular hierarchical partition.

For the volume-rendering application, we used an alternative arrangement method that
eschews a partition-based or hierarchical framework and instead illustrates the structure of
the set of output vectors graphically in a 2D layout. An interface for this arrangement method
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is shown in Figure 5. A thumbnail, which in this case is a small, low-resolution volume-
rendered image, is generated for each final output vector. The thumbnails are arranged in
the center display panel, in a manner that correlates the distance between thumbnails with
the distance between the associated output vectors. The thumbnail display panel can be
panned and zoomed. Selecting a thumbnail brings up a full-size image, which can then be
moved to the surrounding image gallery. Mousing on an image in the gallery highlights its
associated thumbnail, and vice versa.

Thumbnail layout is accomplished using a multidimensional scaling (MDS) [3] method
due to Torgerson [24].* Given a matrix of distances between points, MDS procedures com-
pute an embedding of the points in a low-dimensional Euclidean space (2D in our case)
such that the interpoint distances in the embedding closely match those in the given ma-
trix. Torgerson’s “classical scaling” method, although simpler and less general than iterative
methods, is fast and robust. When the interpoint distances come from an embedding of the
points in a high-dimensional Euclidean space (which is true for the applications we discuss
here, although it need not be true in general), classical scaling is equivalent to an efficient
technique for computing a principal-component analysis of the points [5, 13].

The layouts computed by classical scaling are not without anomalies — as we are using
it, this MDS method is a projection from a high-dimensional space onto a 2D space, which
cannot be done without loss of information — but they do reflect the underlying structure
of the output vectors well enough to allow effective browsing. Omne important practical
detail: since full-size versions of all the images returned by the dispersion procedure must be
rendered anyway, it is convenient and better to compute distances from these full-size images
in the arrangement phase, instead of from the eight pixels used in the dispersion phase.

3.4 Results

Figure 12 illustrates the DG for the volume rendering of the protein data set. The dispersion
procedure returned 256 dispersed input and output vectors. A selection of images is shown
in the surrounding image galleries. The lines that connect images with their thumbnails give
some indication of how images congregate in the thumbnail display. (During interactive use
the association between thumbnails and images is done preferably by dynamic highlighting,
as described above.) Figure 3 shows the result of clicking on one of the images in the image
gallery: the corresponding opacity and color transfer functions are depicted in a pop-up
window, allowing the user to see how image and data relate.

The performance of the dispersion heuristic from this experiment is documented in Fig-
ure 6; this data is representative of all the DG experiments that use the evolutionary disper-
sion heuristic. The curves show how two values, the minimum and average nearest-neighbor
distances in the set of output vectors, increase over time. Improvement is rapid at first:
the minimum and average nearest-neighborhood distances in the initial random set are 184
and 7,789, respectively. However, the rate of improvement drops quickly. Although we used
a trial count of t = 2,000,000 (see Figure 4), it is clear that relatively little improvement
occurred after ¢ = 500,000. To reach this point requires 8 x 500,000 = 4,000,000 raycast

4The use of more sophisticated MDS techniques for arranging a database of images is being investigated

by Rubner et al. [18].
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operations and takes less than 40 minutes on a single MIPS R10000 processor. This duration
is roughly one-sixth of that needed to render the 256 full-size images (300 x 300 pixels) for
the DG.

A second volume-rendering experiment was performed using a computed tomography
(CT) data set for a human pelvis. These data values are presegmented into four disjoint sub-
ranges, one each for air, fat, muscle, and bone. The input vector specifies the y-coordinates of
12 opacity control points; the x-coordinates are held fixed. The input vector does not specify
a color transfer function, since standard colors are used for the different tissue types. The
output vector, distance metric, dispersion, and arrangement were identical to the protein-
rendering experiment. Figure 13 illustrates the DG for the volume rendering of the pelvis
data set.

4 Animation Applications

Motion control in animation involves extensive parameter tuning because the mapping from
input parameters to graphical output is nonintuitive, unpredictable, and costly to compute.®
For these reasons, motion control is very amenable to a DG approach. Building a DG
interface for animation is similar to building one for still images (we reuse the dispersion and
arrangement code from §3 virtually without change); the major differences are in computing
the output-vector components. We now discuss three DG systems for animation tasks,
focusing on this latter issue.

4.1 2D Double Pendulum

The 2D double pendulum is a simple dynamic system with rich behavior that makes it an
ideal test case for parameter-setting methodologies.® A double pendulum consists of an
attachment point h, two bobs of masses m; and ms, and two massless rods of lengths rq
and rq, connected as shown in Figure 7. Our pendulum also includes motors at the joints at
h and m, that can apply sinusoidal time-varying torques. The input vector comprises the
rod lengths, the bob masses, the initial angular positions and velocities of the rods, and the
amplitude, frequency, and phase of both sinusoidal torques, for a total of 14 parameters.

Choosing a suitable output vector proved to be the most difficult part of the DG process
for the double pendulum, as well as for the other motion-control applications; several rounds
of experimentation were needed (see §5 for more details). The output vector must capture
the behavior of the system over time. For the double pendulum, the output vector has 12
parameters: the differences in rod lengths and bob masses, the average Cartesian coordinates
of each bob, and logarithms of the average angular velocity, the number of velocity reversals,
and the number of revolutions for each rod. Euclidean distance is used as the distance metric
on this output space.

"Both interactive evolution [26] and inverse design [12, 14, 22, 25, 27] have been applied previously to
motion control.
5Even without the application of external torques at its joints, the 2D double pendulum exhibits chaotic

behavior [20].
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The mapping from input vector to output vector is accomplished by dynamically simulat-
ing 20 seconds of the pendulum’s motion, and using the algorithm in Figure 4 for dispersion.
Arrangement is accomplished using the MDS layout method of §3.3. The displayed thumb-
nails are static images of the final state of the pendulum, along with a trail of the lower
bob over the final few seconds. We found that these images give enough clues about the full
animation to enable effective browsing. Thumbnails can be dragged into gallery slots, all of
which can be animated simultaneously by clicking on any occupied slot.

Figure 14 shows the DG for the double pendulum. As before, the overlaid lines show
where animations in the gallery are located in the thumbnail display. The plateau in nearest-
neighbor distance is reached after 170,000 dispersion iterations, which take 6.5 hours on a

single MIPS R10000 processor.

4.2 3D Hopper Dog

The previous DG is useful in finding and understanding the full range of motions possible
for the pendulum under a given control regime. However, complete generality is not always
a useful goal: the animator may have some preconceived idea of a motion that needs subtle
refinement to add nuance and detail. The 3D hopper dog, shown in Figure 7. is an articulated
linkage with rigid links connected by rotary joints. It has a head, ears, and tail, and moves
by hopping on its single leg. It has 24 degrees of freedom (DOF). The hopper dog is actuated
by a control system that tries to maintain a desired forward velocity and hopping height, as
well as desired positions for joints in some of the appendages. The equations of motion for
the system are generated using a commercially available package[17]; dynamic simulation is
used to produce the animations.

We started with a basic hopping motion, and then used a DG approach to explore seven
input quantities in order to achieve stylistic, physically attainable gaits. The seven quantities
are: the forward velocity, the hopping height, and the positions of 2-DOF ear joints, a 2-DOF
tail joint, and a 1-DOF neck joint. For each of these seven, a time-varying sinusoid specifies
the desired trajectory, with the minimum value, maximum value, and frequency specified in
the input vector, which therefore contains 21 values.

In this particular case, the elements of the output vector correspond closely to those of
the input vector. The 14-element output vector contains the averages and variances of the
same seven quantities, and is obtained by dynamically simulating 30 seconds of the hopper
dog’s motion. (Output vectors from simulations in which the hopper dog falls are discarded
automatically.) As for the previous two applications, the output-space distance metric is
Euclidean, and the arrangement method and interface from §3.3 are used. The hopper-dog
DG is illustrated in the video proceedings.

4.3 Particle Systems

Particle systems are useful for modeling a variety of phenomena such as fire, clouds, water,
and explosions [16]. A useful particle-system editor might have 40 or more parameters
that the animator can set, so achieving desired effects can be tedious. As in the previous
subsection, we use a DG interface to refine an animator’s rough approximation to a desired
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animation.

The subject for our experiment is a hypothetical beam weapon for NASA space shut-
tles. A first draft was produced by hand using a regular particle-system editor; a still from
midway through the animation is shown in Figure 8. The input vector contains the subset
of particle-system controls that the animator wishes to have tweaked. In this example the
controls govern: the mean and variance of particle velocities, particle acceleration, rate of
particle production, particle lifetime, resilience and friction coefficient of collision surfaces,
and perturbation vectors for surface normals. Among the parameters that are held fixed are
the origin, average direction, and color of the beam.

For efficiency reasons, DG output vectors are based on subsampled versions of the final
graphic where possible, thereby reducing computational costs and allowing more of the space
to be explored. For example, static images can be rendered at low resolution (§2 and §3).
The subsampling strategy for the particle animation is to simulate only every 500th particle
generated during the dispersion phase, and to examine the state of the particle system at just
two distinct points in time: once midway through the simulation, and once at the end. The
output vector comprises measures of the number of particles, their average distance from the
origin and the individual variation in this distance, their spread from the average beam, the
average velocity of the entire system, and the individual variation from this average (we take
logs of all of these quantities except for the beam spread). These six measures are included for
each of the two distinguished times, resulting in 12 output parameters. FEuclidean distance
is the metric on the output space.

Figure 15 shows the DG of variations on the animator’s original sketch from Figure 8. The
dispersion and arrangement methods from §3 are used to generate the DG. Each thumbnail
is the midway still from the corresponding animation. (The user can optionally select thumb-
nails from different stages in the animation.) As with the double-pendulum DG, thumbnails
can be dragged to gallery slots and animated therein. Also as before, lines connect anima-
tion stills with their associated thumbnails. The dispersion heuristic ran for ¢ = 100,000
iterations, at which point it appeared to reach a plateau. This number of trials took approx-
imately six hours on a MIPS R10000 processor. Generating the 256 animations in the DG
with their full complement of particles took a little under five hours on the same processor.

5 Discussion

Table 1 summarizes the DGs described in this paper, in terms of the six basic elements of
a DG system. Some of the variation in this table is application specific, while the remainder
stems from our investigation of alternative dispersion and arrangement methods. All of the
galleries described in the paper produce a useful variety of output graphics.

Using a DG for a particular instance of a design problem is fairly straightforward for
the end user. Aside from browsing the final DG, the user’s only other task may be to
loosely focus the dispersion process by, for example, selecting suitable light-hook and light-
target surfaces (§2), or by specifying a relevant subset of particle-control parameters (§4.3).
However, creating a DG system for an entire class of design problems is more difficult. The
DG-system creator is responsible for choosing the structure of the input and output vectors,
and the distance metric on the output space. Thus, the creator needs a better understanding
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Table 1: Summary of Design Gallery experiments.

of the design problem than the end user. Of the creator’s tasks, the simplest is choosing the
distance metric: very standard metrics sufficed for all applications we tried. Choosing the
input vector is also straightforward. Even when there are many possible ways to parameterize
the input, our experience is that choosing an acceptable parameterization is not hard.

The most difficult task of the DG-system creator is devising an output vector. The first
two DGs in Table 1 work on static images. In these examples, the perceptual similarity
between images correlates well with subsampled image or pixel differences, hence the output
vectors comprise subsampled image and pixel values. An added advantage is that the ranges
of all components of the output vector are bounded and known. Finding measures that
capture the perceptual qualities of a complete animation is harder. The DG systems for
animation tasks required several experiments to get a suitable output vector, although the
process became easier for each successive system. Among the lessons learned in developing
output vectors for motion-control problems, the two most important precepts are, with
hindsight, fairly obvious:

o Take the log of quantities that have a large dynamic range. For many such quantities,
e.g., velocity, human ability to resolve changes in magnitude diminishes as the magni-
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tude increases. To uniformly sample the perceptual space, one must therefore sample
the lower end of the dynamic range more thoroughly.

o The relative weights of the output-vector parameters matter. In general, the output-
vector parameters should be scaled so that they each have approximately the same
dynamic range, otherwise only the parameters with the largest ranges will be dispersed
effectively.

What inevitably happened with a poorly chosen output vector was that the dispersion algo-
rithm found a malicious way to get unfortunate and unexpected spread in one of the vector
coordinates, usually through a degenerate set of input parameters, e.g., pendulums with
extremely short links and very high rpm’s, and particle systems with only a few particles,
but very high variance in velocity.

In our experiments, we investigated two dispersion methods and two arrangement meth-
ods. The dispersion method of Figure 4 is more complex, but performs better. However,
an advantage of the simpler method in Figure 1 is that it may be easier to parallelize. Two
arrangement methods were also tried, one based on graph partitioning and the other on
MDS. Both allowed the user to navigate through the output graphics effectively, and both
had their fans among our group of informal testers. Layout and organizational anomalies
were occasionally evident in both interfaces, but they did not hinder the user’s ability to
peruse the output graphics.

6 Conclusion

Design Gallery interfaces are a useful tool for many applications in computer graphics that
require tuning parameters to achieve desired effects. The basic DG strategy is to extract from
the set of all possible graphics a subset with optimal coverage. A variety of dispersion and
arrangement methods can be used to construct galleries. The construction phase is typically
computationally intensive and occurs off-line, for example, during an overnight run. After
the gallery is built, the user is able to quickly and easily browse through the space of output
graphics.

Inverse design is one technique for setting parameters, but it is only feasible when the
user can articulate or quantify what is desired. DGs replace this requirement with the much
weaker one of quantifying similarity between graphics. Unlike interactive evolution, DGs
are feasible even when the graphics-generating process has high computational cost. Finally,
DGs are useful even when the user has absolutely no idea what is desired, but wants to know
what the possibilities are. This is often the first step in the creative design process.
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Input:

}
}

Notes:

C.

L, a set of lights and corresponding thumbnail images.
n < |L|, the size of the selected subset.

¢, an average-luminance cutoff factor.

Output:
I C L, a set of n dispersed lights and their images.

Procedure:
SELECTION_DISPERSE(L,n,c) {
L« L\ find_dims(e, L);
I+ 0;
for i + 1 ton do {

P_SCOTE — —O0;
foreach ¢ € L do {
q_scoTe +— 00;
foreach r € I do
if image_diff(q,r) < q-score then
q-score < image_diff(q,r);
if q_score > p_score then {
P_SCOTE 4— (_SCOTE;
D < q;
}
}
I« TUu{p};
L L\Ap};

\ denotes set difference.
find_dims(ec, L) returns those lights in L with average luminance less than

image_diff(q,r) returns the value computed by Equation 1.
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Figure 1: A selection-based dispersion heuristic.
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Figure 2: User-interface map.

Figure 3: Pop-up display depicting transfer functions.
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Input:
A random set of input vectors, I, and their corresponding output vectors,

0. |1 = 0] = n.

A trial count, t.

Output:
Modified sets of input and output vectors, I and O.

Procedure:
EVOLUTION_DISPERSE(1,0,t) {
fori+ 1totdo{

J < rand_int(1,n);

u < perturb(1[j],1);

map(,);

k < worst_index(O);

if is_better(v, O[k], O) then {
Ik] + w;
Olk] + v;

}

else if is_better(v, O[j],0) then {
1]3] = u;
Olj] = v;

}

Notes:
rand_int(1,n) returns a random integer in the range [1,n].

perturb(1[j],7) returns a copy of I[j] in which all the elements have been
perturbed. The magnitude of the perturbations is inversely proportional
to .

map(u,v) maps input vector u to output vector v using an application-
specific mapping process.

worst_index(O) returns the index of the output vector in O with minimum
nearest-neighbor distance. Ties are broken using the average distance to
all other vectors in O.

is_better(v, O[k], O) returns true if the nearest neighbor to v in O\ {O[k]}
is further away than the nearest neighbor to O[k] in O. Ties are broken
using average distance to all other vectors in the relevant set.
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Figure 4: An evolutionary dispersion heuristic.
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Image / Animation Gallery

Thumbnail
Display Panel

Figure 5: A more flexible user interface.

60000 | Avg. n-ndist. —
Min. n-ndist. -

20000 |

Nearest-neighbor (n-n) distance values

10000 |

0 500000 1le+06 1.5e+06 2e+06
Iteration

Figure 6: Nearest-neighbor distances over time.

Figure 7: Articulated linkages.
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Figure 8: A still from a particle-system animation.

Figure 9: A DG for light selection and placement.
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Figure 11: Light selection and placement for synthetic lighting of a photograph.
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Figure 12: A DG with different opacity and color transfer functions.

Figure 13: A DG with different opacity transfer functions.
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Figure 15: A DG for a particle system.
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