
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

COLLAGEN: A Collaboration Manager for
Software Interface Agents

Charles Rich, Candace L. Sidner

TR97-21a March 1998

Abstract

We have implemented an application-independent collaboration manager, called Collagen, based
on the SharedPlan theory of discourse, and used it to build a software interface agent for a simple
air travel application. The software agent provides intelligent, mixed initiative assistance without
requiring natural language understanding. A key benefit of the collaboration manager is the
automatic construction of an interaction history which is hierarchically structured according to
the useŕs and agentś goals and intentions.

User Modeling and User-Adapted Interaction, Special Issue on Computational Models for Mixed
Initiative Interaction

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1998
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



MERL – A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

COLLAGEN:

A Collaboration Manager

for Software Interface Agents

Charles Rich Candace L. Sidner∗

TR-97-21a March 1998

Abstract

We have implemented an application-independent collaboration manager, called Colla-
gen, based on the SharedPlan theory of discourse, and used it to build a software interface
agent for a simple air travel application. The software agent provides intelligent, mixed
initiative assistance without requiring natural language understanding. A key benefit of
the collaboration manager is the automatic construction of an interaction history which
is hierarchically structured according to the user’s and agent’s goals and intentions.

To appear in User Modeling and User-Adapted Interaction,
Special Issue on Computational Models for Mixed Initiative Interaction.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Information Technology Center America; an acknowledgment of the authors and individual contributions to the work;
and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose
shall require a license with payment of fee to Mitsubishi Electric Information Technology Center America. All rights
reserved.

Copyright c© Mitsubishi Electric Information Technology Center America, 1998
201 Broadway, Cambridge, Massachusetts 02139

∗Lotus Development Corporation



Publication History:–

1. First printing, TR-97-21a, March 1998



COLLAGEN: A Collaboration Manager

for Software Interface Agents

CHARLES RICH
MERL–A Mitsubishi Electric Research Laboratory, Cambridge, Massachusetts, USA

CANDACE L. SIDNER
Lotus Development Corporation, Cambridge, Massachusetts, USA

March, 1998

Abstract. We have implemented an application-independent collaboration manager, called
Collagen, based on the SharedPlan theory of discourse, and used it to build a software
interface agent for a simple air travel application. The software agent provides intelligent,
mixed initiative assistance without requiring natural language understanding. A key ben-
efit of the collaboration manager is the automatic construction of an interaction history
which is hierarchically structured according to the user’s and agent’s goals and intentions.

Key words: agent, collaboration, mixed initiative, SharedPlan, discourse, segment, inter-
action history.

1. Introduction

Current mixed-initiative interactive systems can be difficult to use: the order
in which actions must be performed by the user and the system is often
inflexible, it’s hard to recover from mistakes, and each system has its own
interaction conventions. Although many factors contribute to these difficul-
ties, we believe that the essence of the problem is not in the user interface
design as viewed over a single or short sequence of interactions, but rather
that current systems lack support for the user’s problem solving process as
it unfolds over extended periods of time. The overall goal of this research is
to develop a new paradigm for human-computer interaction which explicit-
ly supports the user’s problem-solving process based on current theories of
collaborative discourse.

Our most fundamental underlying assumption is that a human-computer
interface based on familiar human discourse rules and conventions will be
easier for people to learn and use than one that is not. Although we cannot
yet confirm this assumption by our own empirical studies, we are encouraged
by an analogy with the direct-manipulation paradigm for graphical user
interfaces, whose success we believe is due in large part to users’ familiarity
with the rules and conventions of object manipulation in everyday life.



2 C. RICH AND C. L. SIDNER

Much is known about the structure of human collaboration and discourse.
In this work, we rely specifically on the SharedPlan work of Grosz and Sidner
(1986; 1990), Grosz and Kraus (1996), and Lochbaum (1994; 1995; 1998).
This work provides us with a well-specified computational theory that has
been empirically validated across a range of human tasks. Section 3 describes
the basic algorithms we use from SharedPlan theory. Section 7.1 discusses
the relationship of this theory to the issue of global initiative in conversation.

A second important methodological choice has been to support the prob-
lem-solving level of human-computer interaction via the “software agent”
paradigm. Specifically, we take the approach of adding a collaborative soft-
ware agent to an existing graphical user interface. Software agents are cur-
rently a new research area without precise definition. Roughly speaking,
a software agent is an autonomous software process which interacts with
humans as well as with elements of its software environment, such as the
operating system, application programs, and other agents.

Finally, at the engineering level, our approach has been to develop an
application-independent collaboration manager for software agents, called
Collagen? (for Collaborative agent). A collaboration manager is a software
component that mediates the interaction between a software interface agent
and a user. It is similar to what is often called a “discourse manager,”
except that it keeps track of not only the linguistic and attentional state of a
discourse, but also the collaborative intentions of the participants. However,
it is less than a fully automated planning system, because it does not by itself
decide what the agent should do or say next (though it may provide some
candidates); it primarily provides a representation for recording the decisions
that the agent has made and communicated. Collagen also introduces a
new graphical interface device, called the segmented interaction history, for
displaying and manipulating the state of a collaborative problem-solving
session.

To summarize the organization of the remainder of this paper: After
further general discussion of our approach, we present a complete example
session (Section 2) with an air travel planning application and agent we have
built to demonstrate the functionality of Collagen. Following the example
session, we review the relevant discourse theory and algorithms (Section 3),
in preparation for a discussion of the application-independent architecture
of Collagen (Section 4) and, more specifically, the problem-solving state
transformations enabled by the segmented interaction history (Section 5).
Section 6 focusses on how application-specific task knowledge is represented
in Collagen. Section 7 reviews the mechanisms in Collagen and in our exam-
ple agent which support mixed initiative. Finally, there is a comparison with
other work and conclusions.

? Collagen is a fibrous protein that occurs in vertebrates as the chief constituent of
connective tissue.



COLLAGEN 3

observe

Agent

communicate

interact interact

observe

Application

User

Figure 1. Collaborative interface agent paradigm.

1.1. Collaborative Interface Agents

Our version of the software agent paradigm (Maes, 1994), which we term a
collaborative interface agent, is illustrated in Figure 1. This paradigm mimics
the relationships that hold when two humans collaborate on a task involving
a shared artifact, such as two mechanics working on a car engine together
or two computer users working on a spreadsheet together.

Notice that the software agent is able to both communicate with and
observe the actions of the user and vice versa. A crucial part of successful
collaboration is knowing when a particular action has been performed. In
the collaborative interface agent paradigm, this can occur two ways: either
by a reporting communication (“I have done x”) or by direct observation.
Currently in Collagen, we treat both of these cases equivalently, since we
are assuming a kind of close collaboration in which both participants know
and intend that all their actions are observed. However, both the underlying
theory and architecture of Collagen equally well apply to a situation in which
some actions cannot be observed, but only reported, such as if the agent is
performing actions at a remote network site.

Another symmetrical aspect of the collaborative interface paradigm in
Figure 1 is that both the user and the agent can interact with the applica-
tion program. There are a number of design alternatives regarding how the
agent’s interaction with the application program is implemented (see Sec-
tion 2.2). Typically, the agent queries the application state using the applica-
tion’s programming interface (API). The agent may modify the application
state either via the API or via the graphical interface.

Although, in the long run, communication between users and interface
agents will very likely be in spoken natural language, we have decided for
both practical and methodological reasons not to include natural language



4 C. RICH AND C. L. SIDNER

understanding in our current system. As a practical matter, natural language
understanding, even in this limited setting, is a very difficult problem in
its own right, which we would like to sidestep for the moment. From a
methodological point of view, we want to emphasize that discourse theory
addresses the content of collaborative communication at a very fundamental
level, regardless of what language the communication is in.

1.2. Mixed Initiative

The mixed-initiative capabilities of a particular agent, such as the air travel
agent described in the next section, arise from the interplay of two sources:
the application-independent algorithms and data structures in Collagen and
application-specific code and libraries “inside” the agent. In terms of Fig-
ure 1, one can think of Collagen as a component of the agent. Alternatively
(looking ahead to Figure 8), one can think of the collaboration manager as
standing between the agent and the user.? In either case, Collagen supports
mixed-initiative by interpreting discourse acts and maintaining a model of
the achieved and expected tasks and goals of the user and agent, thereby
eliminating the need to re-invent these facilities every time a new agent is
built. As we will see in the next section, given Collagen as a base, an agent
with a surprising richness of mixed initiative interaction can be implemented
with the addition of very little application-specific programming.

2. An Example Application and Agent

In this section, we first describe the air travel application program we imple-
mented to serve as a test bed for the development of Collagen. We then dis-
cuss some of the issues involved in adding an interface agent to this applica-
tion, culminating with a detailed walkthrough of an implemented example
session.

2.1. The Air Travel Application

We wanted our test application program to be more complex than the typical
research toy, but less complex than a full commercial program. We also
wanted the application interface to be a good example of the current state of
the art, i.e., a pure direct-manipulation interface where all of the underlying
application state is graphically visible and modifiable.

Figure 2 shows the graphical user interface to the air travel planning sys-
tem we implemented in Common Lisp using the Garnet graphics package
(Meyers et al., 1990). (For the discussion in this subsection, please ignore the

? This view more obviously generalizes to multiple software agents and users, which is
a direction that we may, but have not yet, pursued.



COLLAGEN 5

 Application 

American (AA)

Continental (CO)

Delta (DL)

Eastern (EA)

Lufthansa (LH)

Midway (ML)

Trans World (TW)

United (UA)

USAir (US)

Nonstop Only

BOS DFW DEN SFO BOS

6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

PST

MST

CST

EST

NIL

Save:

Restore: Initial

Undo

Done

Itineraries

100+

Display?

ESTCSTMSTPST

Boston
(BOS)

Baltimore
(BWI)

Atlanta
(ATL)

Philadelphia (PHL)Pittsburgh
(PIT)

Dallas
(DFW)

Denver
(DEN)

San Francisco
(SFO)

Oakland
(OAK)

Agent

How should a trip on the route be scheduled?

User

Ok

No

History

Propose scheduling a trip on the route via ___.

Stop proposing how a trip on the route be scheduled.

Retry proposing how a trip on the route be scheduled.

Undo proposing how a trip on the route be scheduled.

Figure 2. Test application screen.

overlapping windows in the upper-right and lower-left corners.) The appli-
cation provides a direct-manipulation interface to an airline schedule data
base and a simple constraint checker. By pressing buttons, moving sliders,
and so on, the user can specify and modify the geographical, temporal, and
other constraints on a planned trip. The user can also retrieve and display
possible itineraries satisfying the given constraints.

A typical problem to be solved using this application is the following:

You are a Boston-based sales representative planning a trip to visit cus-
tomers in Dallas, Denver, and San Francisco next week. You would prefer
to leave on Wednesday morning, but can leave on Tuesday night if nec-
essary. Your customer in Denver is only available between 11 a.m. and
3 p.m. on Thursday. You would prefer to fly as much as possible on
American Airlines, because you have almost enough frequent-flier miles
to qualify for a free trip this summer. You absolutely must be home by
5 p.m. on Friday to attend your son’s piano recital.

In order to gain some initial intuitions about the problem-solving process
using this application, we asked seven visitors and staff members at MERL
to solve this and similar problems using the test application and recorded
their behavior via informal notes and the logging facilities we built into the
application. A typical problem-solving session lasted about 15 minutes and
entailed about 150 user actions (mouse clicks).

In a typical session, the user begins by clicking on the route map to specify
the origin, order of layover cities, and final destination for the trip. Next,



6 C. RICH AND C. L. SIDNER

Boston DFW DEN SFO Boston

6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

PST

MST

CST

EST

Boston AA Dallas A Denver U SFO AA Boston

Boston AA Dallas A Denver U SFO AA Boston

Boston AA Dallas A Denver U SFO AA Boston

Boston AA Dallas A Denver U SFO AA Boston

Figure 3. Interval bars and displayed itineraries in test application interface.

users typically manipulate some of the small rectangles labelled with city
names. These city “interval” bars can be inserted into the horizontal slider
area below the map and moved and stretched to specify latest arrival and
earliest deparature times at each city (see Figure 3). Users can also restrict
the airlines used by setting the buttons to the left of the route map.

Whenever the user enters or changes a constraint, the number of possible
itineraries is automatically recomputed from the flight schedule data base
and displayed in the box labelled Itineraries. By pressing the Display? button
in that box, the user can view all the possible itineraries laid out along the
same timeline as the interval bars in the large scrollable area at the bottom
of the screen (see Figure 3).

In general, users find that displaying more than about ten itineraries
is too much information. If there are more than this many, they typically
add further constraints or look only at the first few itineraries displayed.
The application program does not allow display when there are zero (over-
constrained) or more than 100 itineraries (under-constrained).

The main difficulties users experienced using the test application (or at
least the ones we paid most attention to) were various forms of getting stuck
and getting lost. Users had trouble knowing what to try next when they had
over- or under-constrained their trip. They also had trouble keeping track of
which combinations of routes and constraints they had already examined.
Although the test application does provide a typical Undo button and a
“snapshot” facility (via the Save button and Restore menu), these were not
very convenient to use. For example, the snapshot facility requires users to
interrupt their work flow to choose a name for and explicitly save the current
state in anticipation of possibly needing to return to it later.

One of our general observations from these sessions is that the users can
productively be viewed as “designing” itineraries (sequence of flights). As
is typical in design tasks, the strategies used included information seeking
(e.g., to see what components—flights—are available with various proper-
ties), constraint satisfaction (e.g., arrival and departure time preferences),
cost reduction (e.g., travel time), searching, backtracking, trade-offs, etc. All
of these showed up in simple ways using this application.



COLLAGEN 7

Another important property of these scenarios is that the initial prob-
lem statement is only partially formalizable within the system.? Taking the
example problem statement above, notice that the application program does
not provide a representation to specify in advance (even if you could) just
how much travel inconvenience you would put up with in order to accu-
mulate more frequent-flyer miles on American. This kind of incompleteness
is typical of design and many other tasks for which people use interactive
systems.

2.2. Asynchronous Window Sharing

The first step in adding a collaborative interface agent to the air travel appli-
cation is to establish the basic communication, observation, and interaction
channels required by the paradigm as shown in Figure 1. This was achieved
using a window-sharing layer implemented in the X Window System and
described in detail elsewhere (Rich, 1996).

A key concept in this window-sharing layer is the home window. The
user and software agent each have a small dedicated window that is used for
communication between them. The home windows start out in the corner
locations shown in Figure 2; the user may move them to different screen
locations in the usual ways provided by the window system.

Each home window contains an identifying face and has an associated
cursor. The user’s cursor is his usual mouse pointer. The agent’s cursor
is the pointing hand icon shown in its home window. The agent uses this
hand to point and click on the shared application window just like the user’s
mouse pointer. The agent’s eyes blink periodically to indicate that its process
is still running. The home windows also shrink and expand as they are used.
For example, after the user has chosen from her communication menu in
Figure 2, both home windows return to their default configurations shown
below.

User

Ok

No

History

Agent

To support asynchronous mixed-initiative interaction, the agent and its
home window are serviced by a separate process from the application and
user home window. Thus even when the agent has asked a question, the user
is free to continue clicking on the application window instead of answering.
Furthermore, using a distributed window system like X, the agent process

? A closely related property is that there is usually more than one “right” answer.



8 C. RICH AND C. L. SIDNER

may run on a different machine than the user/application process. (Whether
or not to run the agent process in the same address space as the application
is an engineering tradeoff that depends on the application.)

Returning now to Figure 1, let us account for how each of the arrows was
realized with the air travel application:
− Communication from the agent to the user is achieved by printing

English text in the agent’s home window, as illustrated in Figure 2.
− Communication from the user to the agent is achieved by the user select-

ing from a menu as illustrated in Figure 2. Internally, a message in the
artificial discourse language (see Section 6.1) is transmitted to the input
buffer of the agent process.

− The user interacts with the application in the usual way, modifying the
application state with her cursor and “querying” it with her eyes.

− The agent observes the user’s actions by virtue of a generic layer in the
application that mirrors semantic actions into the input buffer of the
agent process.

− The agent modifies the application state with its cursor (see discussion of
“unGUI” module in (Rich, 1996)) and queries it using the programming
interface (API) provided by the application.

− The user observes the agent’s actions by watching the agent’s cursor.
The final two points above allow some design alternatives, which may

be explored with other target applications. In particular, it may sometimes
be difficult to support agent manipulation of the shared graphical inter-
face by generating mouse-level events. A weaker alternative to the complete
agent/user symmetry above would be for the agent to modify the application
state through the API and just the use its cursor to point to the location
where the display changed.

2.3. Example Session

Figure 4 shows the segmented interaction history of a complete session
between a user and our collaborative agent solving the problem posed in
Section 2.1 above. This is only one of many possible histories with different
structures, depending on what the user chooses to do at each point in time.
Also, as we will see in Section 5, this history is an explicit object in the
interaction, whose structure can be referred to by both the agent and the
user.

The contents of the Figure 4, including indentation, is automatically gen-
erated by Collagen (in a separate history window) as a printout of data
structures built up during the session by the algorithms described in the
next section. Event numbers have been added at the left for exposition.

Indentation in the history indicates the nesting of collaborative goals. The
phrase in parentheses at the start of each level of indentation indicates the



COLLAGEN 9

(Jointly scheduling a trip on the route via working backward, allowing 4 itineraries)
1 USER: "Propose scheduling a trip."
2 AGENT: "Ok."

(Done user identifying route of scheduling a trip as Boston to Dallas to Denver
to San Francisco to Boston, allowing 100+ itineraries)

3 USER: Add Boston to the route.
4 USER: Add Dallas to the route, allowing 97 itineraries.
5 USER: Add Denver to the route, allowing 100+ itineraries.
6 USER: Add San Francisco to the route, allowing 100+ itineraries.
7 USER: Add Boston to the route, allowing 100+ itineraries.
8 USER: "Ok."

(Done user proposing a trip on the route be scheduled via working backward)
9 AGENT: "How should a trip on the route be scheduled?"

10 USER: "Propose scheduling a trip on the route via working backward."
(Done user working on San Francisco to Boston leg, allowing 70 itineraries)

11 AGENT: "Propose you work on San Francisco to Boston leg."
12 USER: Add Boston final interval with arrival Sun 11:30p.
13 USER: Change Boston final interval to arrival Fri noon.
14 USER: Add San Francisco stopover with arrival Wed 1:55a departure Wed 9:55a,

allowing 70 itineraries.
15 USER: Change San Francisco stopover to arrival Thu 6:00p departure Fri 1:57a.
16 USER: "Ok."

(Done user working on Denver to San Francisco leg, allowing 61 itineraries)
17 AGENT: "Propose you work on Denver to San Francisco leg."
18 USER: Add Denver stopover with arrival Thu 8:21a departure Thu 3:19p.

...
(Done jointly specifying airlines, allowing 4 itineraries)

36 USER: Add American specification, allowing no itineraries.
(Done agent adding United specification, allowing 4 itineraries)

37 AGENT: "Propose I add United specification."
38 USER: "Ok."
39 AGENT: Add United specification, allowing 4 itineraries.

(User displaying and selecting itineraries)
40 USER: Display 4 itineraries.
41 USER: Select itinerary Wed AA/1099 Wed AA/313 Thu UA/343 Fri AA/928.

Figure 4. Segmented interaction history for example session.

goal (purpose) being achieved by that segment. A more formal specification
of the segmented interaction history representation will be provided in Sec-
tion 3 after the underlying discourse theory terminology has been formally
defined.

Notice that each event in the history is either a communication, represent-
ed by an English gloss in quotes "...", or the description of an application-
level manipulation (result of a mouse click). Both the user and agent perform
both communication and manipulation acts and the initiative moves back
and forth between the two.

Whenever a constraint (such as an airline specification) is entered or
changed, the application program automatically recomputes the number of
possible itineraries and displays this number in the box labelled “Itineraries.”



10 C. RICH AND C. L. SIDNER

 Application 

American (AA)

Continental (CO)

Delta (DL)

Eastern (EA)

Lufthansa (LH)

Midway (ML)

Trans World (TW)

United (UA)

USAir (US)

Nonstop Only

BOS DFW DEN SFO BOS

6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

PST

MST

CST

EST

 

Save:

Restore: Initial

Undo

Done

Itineraries

100+

Display?

ESTCSTMSTPST

Boston
(BOS)

Baltimore
(BWI)

Atlanta
(ATL)

Philadelphia (PHL)Pittsburgh
(PIT)

Dallas
(DFW)

Denver
(DEN)

San Francisco
(SFO)

Oakland
(OAK)

Agent

User

Ok

No

Hide

Segmented Interaction History

(Jointly scheduling a trip on the route, allowing 100+ itineraries)

  USER:   "Propose scheduling a trip."

  AGENT: "Ok."

  (User identifying route of scheduling a trip as Boston to Dallas to Denver to San Francisco to Boston,

      allowing 100+ itineraries)

    USER:   Add Boston to the route.

    USER:   Add Dallas to the route, allowing 97 itineraries.

    USER:   Add Denver to the route, allowing 100+ itineraries.

    USER:   Add San Francisco to the route.

    USER:   Add Boston to the route.

Figure 5. Pop-up window for segmented interaction history.

In the segmented interaction history, the number of possible itineraries after
each segment or event is indicated if it is different from the number before.

Given the problem statement in Section 2.1 above, the user could just
start working on scheduling this trip herself by pointing and clicking on the
application window. Instead, she chooses to communicate with the agent to
initiate a collaboration (event 1). As we will see in the ensuing conversation,
the agent not only responds to the user’s initiative here, but will also take
the initiative itself at appropriate times in the joint activities.

In order to communicate with the agent, the user clicks on the arrow at
the bottom of her home window, causing the window to expand to show her
the current communication choice(s):

Propose scheduling a trip.

There is only one possible collaboration to propose here, since this test
application was built with only one toplevel goal in mind. A real application
would have a range of high-level goals. The agent indicates its acceptance of
the user’s proposal by displaying “Ok” in its home window (event 2). This
simple utterance by the agent not only communicates acceptance of the
proposed action to the user; it also reflects the creation within Collagen of
an initial model of the purpose and expected elements of the collaboration.

Note that at this point, however, the agent has only generic knowledge
of the typical tasks involved in scheduling a trip and recipes (general meth-
ods) for performing them. It does does not know anything about the user’s
particular problem or preferences.



COLLAGEN 11

The user now clicks in order on cities on the map: Boston, Dallas, Den-
ver, San Francisco, Boston. The agent recognizes these actions as forming a
segment whose purpose is to identify one of the parameters of the current
goal, i.e., the route of the trip.

The segmented interaction history is computed incrementally. Its most
basic function is to orient the user. For example, if the user left her computer
in the middle of working on this problem and returned after a few hours (or
days), the history would help her reestablish where in the problem solving
process she was. In particular, if the user requested a display of the history
at this point (by pressing the “History” button in her home window), the
pop-up window shown in the upper left corner of Figure 5 would appear
with the current segment highlighted.

The user clicks on the “Ok” button (event 8) in her home window to
signal the end of the current segment. The agent now takes the initiative
and in its home window asks (event 9):

How should a trip on the route be scheduled?

This question is an example of intelligent assistance in which the agent
helps the user focus on what needs to be decided next in order to push the
current task forward. Unlike conventional pop-up help windows, however,
the user at this point can delay or ignore the agent’s question simply by
continuing to click on the application window.

Figure 2 shows the moment in the interaction history after the agent’s
question above when the user is about to answer by choosing a response from
the communication menu in her home window. This response is event 10 in
the segmented interaction history. Notice that the user’s first menu choice
has a blank at the end where the name of the recipe is supposed to go. (See
Section 5 for an explanation of the other choices.)

Once a communication menu choice is made, the user may be presented
with another menu, such as the one below, to choose from the allowable
values for any unspecified parameters of the communication action:

Propose scheduling a trip on the route via ___.

working forward

working backward

Our agent currently knows only two generic toplevel recipes for schedul-
ing a trip on a given route, gleaned from our informal observations of test
application users and study of transcripts of people talking on the phone to
real travel agents (Kowtko and Price, 1989). These two recipes are: working
forward on the legs of the trip starting at the originating city and working
backward starting at the final destination.



12 C. RICH AND C. L. SIDNER

The user chooses working backward (event 10), presumably because of
the hard constraint on attending the piano recital after the trip, after which
the agent says:

Propose you work on San Francisco to Boston leg.

Here again the agent uses the current context to assist the user, in this
case to propose the next subtask. Working on a leg entails manipulating the
“interval bars” in the horizontal slider area below the map to specify latest
arrival and earliest departure times at a city (see Figure 3).

Notice that the agent’s response here results from a simple application-
independent strategy, namely to propose the next (in this case, the first)
executable step in the current recipe. The same strategy underlies the agent’s
proposal in event 17 after the user finishes working on the San Francisco to
Boston leg. As we will see in the architecture discussion in Section 4, this
application-independent strategy is embedded in the collaboration manager,
even though the recipes themselves are application-specific.

We skip ahead now to event 36. As mentioned earlier, we observed that
one of the main ways that users of the test application get stuck is by over-
constraining their itinerary, causing the itinerary count to become zero. Here
the user has required all flights to use American airlines, which resulted in
no possible itineraries.

The agent’s response (event 37) is to suggest reducing constraints by add-
ing United to the set of allowable airlines. The agent did not propose this
particular constraint change at random—it used its ability to access the test
application’s full API to search the flight data base for an airline that would
in fact increase the number of itineraries. This is a good example of where
the capabilities of one participant in collaboration are usefully different from
those of another. With the user’s permission (event 38), the agent uses its
hand cursor to click on the United airlines button (event 39).

The interaction ends with the user displaying the four possible itineraries
in the scrolling window (see Figure 3) and selecting one, which causes
detailed information, such as flight numbers, to be printed in the message
window above the Itineraries count in the application interface.

2.4. Mixed Initiative in the Example Session

The mixed-initiative behavior in the example session above arises from
the interplay of two sources: the application-independent discourse mod-
el embodied in Collagen, and application-specific knowledge “inside” the
air travel agent. Application-specific knowledge can be further decomposed
into two forms: (i) a library of recipes that specify the typical steps and con-
straints for achieving certain goals and (ii) arbitrary pattern-action rules.

For example, the agent’s contributions in events 9, 11, 17 and 39 arise
from the application of the following simple and generic discourse principles



COLLAGEN 13

to the collaborative discourse state at each step (these principles and others
used in Collagen are described in more detail in the next section):
− A recipe needs to be identified for the current goal.
− Identification of a recipe may be achieved by asking the other partici-

pant.
− A goal or action may be performed when all of its parameters are known

and all of its predecessors (in the current recipe) have been achieved.
− A goal or action may be performed by any participant who is capable,

unless a specific participant has been specified.
In particular, the agent’s question in event 9 arises from the application

of the first and second principles above to the state in which no recipe has
yet been identified for the goal of scheduling a trip. The agent’s proposals
in events 11 and 17 arise from the application of the third and fourth prin-
ciples above to the steps of the working-backward recipe. (Only the user is
capable of working on these goals, because only the user knows her travel
preferences). The agent’s manipulation action in event 39 also arises from
the application of the third and fourth principles above, together with an
additional collaboration-specific rule which requires the agent to seek explic-
it agreement from the user (event 37) before performing any manipulation
actions.

The content of the agent’s proposal in event 37 (i.e., the choice of United
airlines) arises from an application-specific pattern-action rule for overcon-
strained situations, as discussed in the preceding section. Collagen plays an
important role even in the case of these arbitrary pattern-action rules, since
the pattern (situation description) part of such rules typically depends not
only on the application state, but also on the current discourse state.

3. Collaborative Discourse Theory and Algorithms

Collaboration is a process in which two or more participants coordinate their
actions toward achieving shared goals. Most collaboration between humans
involves communication. Discourse is a technical term for an extended com-
munication between two or more participants in a shared context, such as a
collaboration.

This section provides a brief overview of the collaborative discourse the-
ory and algorithms on which Collagen is based. Since the goal of this work
is to use well-established human discourse principles, readers are referred to
the referenced literature for more details.

Collaborative discourse in Grosz and Sidner’s framework (Grosz and Sid-
ner, 1986; Grosz and Sidner, 1990) is understood in terms of three interre-
lated kinds of discourse structure:
− intentional structure, which is formalized as partial SharedPlans.



14 C. RICH AND C. L. SIDNER

− linguistic structure, which includes the hierarchical grouping of actions
into segments.

− attentional structure, which is captured by a focus stack of segments.
We summarize the key features of each of these structures below, followed

by a concrete example of Collagen’s discourse state representation. Finally,
we describe the discourse interpretation and generation algorithms, which
are the heart of Collagen’s discourse processing.

3.1. SharedPlans

Grosz and Sidner’s theory predicts that, for successful collaboration, the
participants need to have mutual beliefs? about the goals and actions to be
performed and the capabilities, intentions, and commitments of the partici-
pants. The formal representation (Grosz and Kraus, 1996) of these aspects
of the mental states of the collaborators is called a SharedPlan.

As an example of a SharedPlan in the air travel domain, consider the
collaborative scheduling of a trip wherein participant A (e.g., the user) knows
the constraints on travel and participant B (e.g., the software agent) has
access to a data base of all possible flights. To successfully complete the
collaboration, A and B must mutually believe that they:
− have a common goal (to find an itinerary that satisfies the constraints);
− have agreed on a sequence of actions (a recipe) to accomplish the com-

mon goal (e.g., choose a route, specify some constraints on each leg,
search for itineraries satisfying the constraints);

− are each capable of performing their assigned actions (e.g., A can specify
constraints, B can search the data base);

− intend to do their assigned actions; and
− are committed to the overall success of the collaboration (not just the

successful completion of their own parts).
Several important features of collaboration should be noted here.
First, due to partial knowledge of the shared environment and each other,

participants do not usually begin a collaboration with all of the conditions
above “in place.” They typically start with only a partial SharedPlan. An
important purpose of the communication between participants is to deter-
mine (possibly with the help of individual information gathering) the appro-
priate recipe to use, who should do what, and so on.

Second, notice that SharedPlans are recursive. For example, the first step
in the recipe mentioned above, choosing a route, is itself a goal upon which
A and B might collaborate.

? A and B mutually believe p iff A believes p, B believes p, A believes that B believes
p, B believes that A believes p, A believes that B believes that A believes p, and so on.
This is a standard philosphical concept whose infinite formal definition is not a practical
problem.



COLLAGEN 15

Finally, planning (coming to hold the beliefs and intentions required for
the collaboration) and execution (acting upon the current intentions) are
usually interleaved for each participant and among participants. Unfortu-
nately, there is currently no generally accepted domain-independent theory
of how people manage this interleaving. (The current best candidates for
a generic theory are the so-called belief/desire/intention frameworks, such
as (Bratman et al., 1988).) Collagen therefore does not currently provide
a generic framework for execution. Another way of saying this is that we
provide a generic framework only for recording the order in which planning
and execution occur, not for deciding how to interleave them.

3.2. Discourse Segments and Focus Stack

The concept of discourse segments is at the very foundation of discourse the-
ory. Analysis of discourses from a range of human interactions has resulted in
general agreement that discourse has a natural hierarchical structure. The
elements of this hierarchy are called segments. A segment is a contiguous
sequence of communicative actions that serve some purpose. For example,
a question and answer sequence constitutes a discourse segment whose pur-
pose is (usually) to achieved shared knowledge of some fact.

The existence of segments can be seen in everything from pitch patterns
in spoken discourse to the way that pronouns are interpreted. Automat-
ic segmentation (i.e., the segmented interaction history) has therefore been
our first milestone in applying discourse principles to human-computer inter-
action.

A simple example of segments in a task-oriented human discourse is
shown in Figure 6, which is adapted from (Grosz [Deutsch], 1974). In this dis-
course, participant A is instructing participant B how to repair an air com-
pressor. Notice that this analysis of discourse structure includes not only the
participants’ utterances, but also their actions (e.g., B removes belt). This
is appropriate in a context, such as collaborative interface agents, where
all actions on the shared artifact are known and intended to be mutually
observable.

The toplevel segment and three embedded segments in Figure 6 are indi-
cated by the brackets and indentation shown (further subsegments are elid-
ed). In Grosz and Sidner’s theory, the segment structure of such a discourse
is accounted for by assigning a purpose to each segment, such that each
segment’s purpose contributes to successful collaboration on the parent seg-
ment’s purpose via the SharedPlan conditions described above.

For example, the purpose of the toplevel segment in Figure 6 is to replace
the pump and belt, which is the common goal of the collaboration. The
purpose of the first subsegment is to remove the belt, which is one of the steps
in the recipe for replacing the belt. The purpose of the first subsubsegment



16 C. RICH AND C. L. SIDNER




A: “Replace the pump and belt please.”


B: “OK, I found a belt in the back.”[
B: “Is that where it should be?”
A: “Yes.”

B: Removes belt.
B: “It’s done.”




A: “Now remove the pump.”
. . .

A: “First you have to remove the flywheel.”
. . .

A: “Now take off the base plate.”
B: “Already did.”

Figure 6. Segments in a task-oriented human discourse.

is to identify a parameter of the removal action, i.e., the belt to be removed.
The purpose of the second subsegment is to remove the pump, which is also
one of the steps in the recipe for the toplevel purpose.

The shifting focus of attention in a discourse is captured by a focus stack
of discourse segments. In the natural flow of a a collaborative discourse,
new segments and subsegments are created, pushed onto the focus stack,
completed, and then popped off the stack as the SharedPlan unfolds in
the conversation. Sometimes participants also interrupt each other, abandon
the current SharedPlan even though it is not complete, or return to earlier
segments.

Thus, as we will see more concretely in the discussion of Figure 7 below,
the attentional (focus stack) and intentional (SharedPlan) aspects of dis-
course structure theory are connected through the discourse segment pur-
pose: each segment on the stack is associated with a SharedPlan for its
purpose (Lochbaum, 1994; 1998).

3.3. Discourse State Representation in Collagen

The discourse state in Collagen is a concrete representation of the three
kinds of discourse structure described above. Figure 7 shows an example
discourse state.

The lower part of Figure 7 shows a plan tree, which is an approximate rep-
resentation of a partial SharedPlan. Plan trees are composed of alternating
act and recipe nodes as shown. Both acts and recipes have bindings, shown as



COLLAGEN 17

act8

recipeparameter2

act7

recipe6

Focus
Stack

History
List

who

user

who

user

value1

parameter1

USER:  "Propose I do act8."

USER:  Act7.

USER:  "Parameter1 of act6 is value1."

(User doing act8)

recipe

step2

step3step1

AGENT:  Act3.

(Stopped jointly doing act2 via recipe2)

USER:    Act4.

act6

who

user

(Stopped jointly doing act1 via recipe1)

(Done agent doing act5 via recipe5)

(User doing act6 on value1 via recipe6)

(User doing act8)

Plan Tree

Figure 7. Internal discourse state representation.

labelled stubs in the figure, with constraints between them specified in their
recipe library definitions. An act node has a binding for each of its param-
eters, who performs it and, if it is non-primitive, a recipe node. A recipe
node has a binding for each step in the recipe. To support the nonmono-
tonic changes in discourse state required for negotiation and history-based
transformations (Section 5), bindings and the propagation of logical infor-
mation in the plan tree are implemented using a truth-maintenance system.

For example, in Figure 7, act6’s sole parameter has been bound to value1
and act6’s recipe has been bound to recipe6. If a history-based transforma-
tion “undoes” act7 and act8, then act6’s recipe binding will be retracted.
Similarly, act6’s parameter binding will be retracted if the first communica-
tion act in its segment is undone.

The upper part of Figure 7 shows the focus stack (illustrated as growing
downward) and the history list, which contains toplevel segments that have
been popped off the focus stack. When a segment is popped off the focus
stack, it is added to the history list if and only if it has no parent segment.
In the figure, there are two segments on the focus stack and two segments



18 C. RICH AND C. L. SIDNER

in the history list. The elements of one of the segments on the stack and one
of the segments in the history list are shown expanded to the right.

Segments on the stack are called open, because they may still have acts
added to them. Segments that have been popped off the stack are called
closed. All the segments in the history list and their subsegments are closed.
Segments on the stack may have closed subsegments.

Usually, the root of the plan tree (e.g., act6 in Figure 7) is the purpose
of the base segment of the focus stack, and each subsegment (e.g., act8)
corresponds to a subtree, recursively. The exception is when there is an
interruption, i.e., a segment which does not contribute to its parent, in which
case we have a disconnected plan tree for that segment. Plan trees remain
associated with segments even after they are popped off the stack.

The two key discourse processing algorithms used in Collagen are dis-
course interpretation, which is a reimplementation of Lochbaum’s (1994;
1998) rgraph augmentation algorithm, and discourse generation, which is
essentially the inverse of interpretation.

3.4. Discourse Interpretation

The main job of discourse interpretation in Collagen is to consider how
the current direct communication or observed manipulation action can be
viewed as contributing to the current discourse purpose, i.e., the purpose of
the top segment on the focus stack. This breaks down into five main cases.?

The current act either:
− directly achieves the current purpose,
− is one of the steps in a recipe for the current purpose (this may involve

retrieval from a recipe library),
− identifies the recipe to be used to achieve the current purpose,
− identifies who should perform the current purpose or a step in the cur-

rent recipe, or
− identifies an unspecified parameter of the current purpose or a step in

the current recipe.
If one of these cases obtains, the current act is added to the current seg-

ment (and the partial SharedPlan representation is appropriately updated).
Furthermore, if this act completes the achievement of the current discourse
segment purpose, the focus stack is popped.

If none of the above cases holds, discourse interpretation concludes that
the current action starts an interruption, i.e., a segment that does not con-
tribute to its parent. A new segment is pushed onto the focus stack with
the current act as its first element. The purpose of this new segment may

? The last three cases are instances of a larger class of explanations that Lochbaum
(1995) calls “knowledge preconditions.”



COLLAGEN 19

or may not be known, depending on the specific content of the initiating
action.

The occurence of interruptions may be due to actual interruptive material
in the ongoing discourse or due to an incomplete recipe which does not
include the current act even though it ought to. We take the view that, in
general, the agent’s knowledge will never be complete and it therefore must
deal gracefully with unexpected events.

Another phenomenon which manifests itself as interruptions in the cur-
rent discourse interpretation algorithm is when the user and/or agent are
pursuing two (or more) goals in parallel, e.g., arbitrarily interleaving steps
from both recipes. In this situation, some higher level representation of the
parallel goals would be preferable to the alternating structure of pushes
(interruptions) and pops (stop transformations, see Section 5.1) currently
required. This is an area for future work.

It is tempting to think of discourse interpretation as the plan recognition
problem, which is known to be exponential in the worst case (Kautz, 1990).
However, this misses a key property of normal human discourse, namely
that speakers work hard to make sure that their conversational partners can
understand their intentions without a large cognitive search. Notice that
only search performed by the discourse interpretation algorithm above is
through the steps of the current recipe or all known recipes for the current
segment’s purpose (and this is not done recursively). We think it will be
reasonable to expect users to communicate enough so that the agent can
follow what is going on without having to do general plan recognition.

3.5. Discourse Generation

The discourse generation algorithm is, as mentioned above, essentially the
inverse of interpretation. It looks at the current focus stack and associated
SharedPlan and produces a prioritized agenda of (possibly partially speci-
fied) actions which would contribute (according to the five cases above) to
the current discourse segment purpose. For example, if the current purpose
is to jointly schedule a trip, the agenda includes an action in which the agent
asks the user to propose a route. In Collagen, the agenda contains commu-
nication and manipulation actions by either the user or agent, which would
advance the current problem-solving process.

The main reason we believe that the menu approach to user commu-
nication demonstrated in Section 2 is workable is because the discourse
generation algorithm typically produces only a relatively small number of
communication choices, all of which are relevant in the current discourse
context.



20 C. RICH AND C. L. SIDNER

4. The Collagen Architecture

This section focuses on the main technical contribution of this work, which
is to embed the theory-grounded algorithms and data structures described
in Section 3 into a practical architecture (Figure 8) for building collaborative
interface agents, such as our air travel example. Figure 8 is essentially an
expansion of Figure 1 in which the Collagen discourse manager is made
explicit as the mediator of all communication between the agent and the
user.

All of the internal data flow in Figure 8 takes place using Collagen’s
artificial discourse language (see Section 6.1). Whenever there is a need for
the user to see information, such as in display of the user communication
menu or the segmented interaction history, these internal representations
are given an English gloss by simple string substitution in templates defined
in the recipe library.

We refer to Collagen as a collaboration manager, because it provides a
standard mechanism for maintaining the flow and coherence of agent-user
collaboration. In addition to saving implementation effort, using a collabo-
ration manager provides consistency across applications, and to the extent
it is based on good principles, leads to applications that are easier to learn
and use.

Even when using Collagen, however, a developer still must provide con-
siderable application-specific information. After discussing the generic archi-
tecture of Collagen below, we will focus in Section 6 on how this application-
specific information is provided via the recipe library and the artificial dis-
course language.

4.1. The Agent

Note that the agent itself is a “black box” in Figure 8. We are not trying
to provide tools for building a complete agent. At the heart of the agent
there may be a rule-based expert system, a neural net, or a completely ad
hoc collection of code—whatever is appropriate for the application. What
Collagen does provides is a generic framework for recording the decisions
made and communicated by the agent (and the user), but not for making
them. We believe this is a good software engineering modularity.

As can be seen in Figure 8, Collagen also provides some important new
resources (inputs) for a developer to use in implementing the decision-
making part of an interface agent: the discourse state, the agenda, and the
recipe library.

The default agent implementation that “comes with” Collagen always
simply chooses to perform the highest priority action in the current agen-
da for which the actor is either unspecified or itself. Our example agent
was constructed by extending this default implementation only a page of



COLLAGEN 21

D
is

co
u

rs
e

In
te

rp
re

ta
ti

o
n

R
ec

ip
e 

L
ib

ra
ry

U
se

r

C
o

lla
b

o
ra

ti
o

n
 M

an
ag

er

se
gm

en
t

se
gm

en
t

se
gm

en
t

D
is

co
u

rs
e

G
en

er
at

io
n

A
g

en
d

a

D
is

co
u

rs
e 

S
ta

te

H
is

to
ry

 L
is

t

F
o

cu
s 

S
ta

ck

S
eg

m
en

te
d

 In
te

ra
ct

io
n

H
is

to
ry

O
b

se
rv

at
io

n
s

M
en

u
U

se
r 

C
o

m
m

u
n

ic
at

io
n

A
ct

io
n

s
A

ct
io

n
s

C
o

m
m

u
n

ic
at

io
n

C
o

m
m

u
n

ic
at

io
n

O
b

se
rv

at
io

n
s

P
la

n
 T

re
e

A
g

en
t

A
p

p
lic

at
io

nQ
u

er
ie

s

A
p

p
lic

at
io

n

Figure 8. Collagen architecture.



22 C. RICH AND C. L. SIDNER

application-specific logic, which sometimes proposed other actions based on
querying the discourse and application states. For example, this application-
specific code was triggered at event 37 in Figure 4, where the agent propos-
es adding United airlines. All of the agent’s other communications in the
example session were the result of the default application-independent agent
implementation.

4.2. The Basic Execution Cycle

The best way to understand the basic execution cycle of the architecture
in Figure 8 is to start with the arrival of a communication or observation
event (from either the agent or the user) at the discourse interpretation
module at the top center of the diagram. The interpretation module updates
the discourse state as described in Section 3.4 above, which then causes a
new agenda of expected communication and manipulation acts (by either
the user or agent) to be computed by the discourse generation module. As
mentioned above, the agent may decide to select an entry in this new agenda
for execution.

A subset of the agenda is also presented to the user whenever the user
opens the communication menu in his home window. Specifically, the user
communication menu is constructed by selecting all the communication
actions in the agenda for which the actor is either unspecified or itself.
What we are doing here is using expectations generated by discourse con-
text to replace natural language understanding. The user is not allowed to
make arbitrary communications, but only to select from communications
expected by the discourse interpretation algorithm. Thus, unlike usual ad
hoc menu-driven interaction, the user menu in Collagen is systematically
generated from an underlying model of orderly discourse.

If the user selects one of the communication menu entries, it becomes
input to the discourse interpretation module, thus closing an execution cycle.

4.3. Segmented Interaction History

In addition to the user communication menu, the second form of human-
readable output produced by the Collagen discourse manager is the segment-
ed interaction history, which appears in a pop-up window (see Figure 5)
whenever the user presses the “History” button in her home window. The
most basic function of the segmented interaction history is to provide the
user with a structured guide to her problem solving process. It also serves as
a menu for history-based transformations, which are discussed in the next
section.

The segmented interaction history is produced from the current discourse
state by the following three steps:



COLLAGEN 23

(Stopped jointly doing act1 via recipe1)
(Done agent doing act5 via recipe5)
(User doing act6 on value1 via recipe6)

USER: "Parameter1 of act6 is value1."
USER: Act7.
(User doing act8)

USER: "Propose I do act8."
(Expect step3)

Figure 9. Segmented interaction history generated from discourse state in Figure 7.

1. List the purpose of each toplevel segment on the history list started with
the oldest.

2. Recursively, starting with the toplevel open segment (the base segment
of the focus stack), list the purpose of each closed subsegment followed
by the purpose and elements of each open subsegment, indenting at each
recursion.

3. For each open subsegment, starting with the most deeply nested, list
the unexecuted recipe steps, if any, in the plan tree for that segment’s
purpose, outdenting at each level.?

An example of the result of applying these steps to the discourse state in
Figure 7 is shown in Figure 9 with the current segment selected.

Notice above and in Figure 4 that the purpose of an open segment is
glossed with a present participle, such as “doing.” Closed segments are
glossed starting with “done” or “stopped.” Remaining unexecuted steps of
a recipe are glossed starting with “expect.”

Other interactive systems also maintain histories. However, most such
histories are flat or, if they do have structure, it is a reflection of the nesting
of dialog boxes, rather than, as is the case here, the user’s problem solving
process.

Users can also exploit the structure of the interaction history to control
the level of detail that is presented. The presentation of a segment can
alternate between just its purpose or all of its elements by single and double
clicking similar to the way that hierarchical file structures are expanded and
contracted in graphical file inspectors. For example, Figure 10a shows the
same discourse state as above in which the oldest toplevel segment has been
expanded to two levels of detail, while all the other segments have been
contracted to just their purpose.

? Because it contains both historical and future information, this display might more
accurately be called the interaction “context.” However, we have kept the name “history”
because it is more suggestive.



24 C. RICH AND C. L. SIDNER

5. History-Based Transformations

Making the interaction history an explicit, manipulable object, and the fact
that it is structured according to the user’s intentions, opens the possibility
for powerful transformations on the state of the problem solving process.
In this section, we describe three basic categories of such transformations,
which we call stopping, returning, and replay. The framework in which to
understand these transformations is in terms of their different effects on the
application state and the discourse state.

The details of the application state representation depend, of course, on
the application. For the purpose of this discussion, we assume that the appli-
cation provides some method for reestablishing any earlier state, neglecting
the important engineering tradeoffs between copying the entire state of an
application at various “checkpoints” versus keeping enough information to
reconstruct intermediate states by undoing or replaying actions. (If check-
pointing is expensive, segment boundaries suggest good places at which to
do so.)

In all of the transformations below, the elements of closed segments are
never modified. A copy of the focus stack and the plan tree are stored at the
start and end of each segment. (Because the elements of a segment are acts
and subsegments, the start of a segment does not always correspond to the
end of another segment.)

The basic unit to which history-based transformations are applied is the
segment. Requests to apply transformations applicable to the current seg-
ment (the top of the stack) always appear at the end of the user’s commu-
nication menu, after the entries derived from the current discourse manager
agenda. For example, at the moment in the opening scenario shown in Fig-
ure 2, the purpose of the current segment is to propose (the recipe for) how
the trip will be scheduled. Therefore, as seen in the figure, the following
three lines appear at the bottom of the user communication menu:

Stop proposing how a trip on the route be scheduled.
Retry proposing how a trip on the route be scheduled.
Undo proposing how a trip on the route be scheduled.

To apply transformations to other segments, the user pops up the inter-
action history window and then selects the desired segment by clicking on it.
Applicable transformation requests for the selected segment are then auto-
matically added to the communication menu.

5.1. Stopping

The simplest history-based transformation is to pop the current segment off
the focus stack without changing the application state. Furthermore, if the
purpose of the popped segment contributes to its parent, the appropriate



COLLAGEN 25

unbindings are also performed in the plan tree. The stop transformation is
applicable only to open segments.

The user may employ this transformation to let the agent know that,
even though the current goal has not been achieved, she is no longer working
towards it. It may also be useful when the agent has misunderstood what the
current goal is. Stopping is a component of some of the more complicated
transformations described below.

5.2. Returning

Returns are a category of transformation in which both the application and
discourse states are reset to an earlier point in the problem solving process.
There are three forms of return, which we call retry, revisit, and undo. In
all three forms, the application state is reset to the state at the start (retry
and undo) or end (revisit) of the target segment.

5.2.1. Retry and Revisit

Intuitively, retry is the transformation to use when you want to return to
working on an earlier goal—achieved or not—and try achieving it a different
way. Retry is applicable to any segment.

Revisit is the transformation to use when you want to pick up where you
left off working on an earlier goal, especially one that was stopped. Revisit
is applicable only to closed segments, since all open segments are currently
being worked on.

To illustrate retry and revisit, Figure 10a shows the history corresponding
to the abstract discourse in Figure 7, with the segment to be returned to
selected. Figures 10b and 10c show the interaction histories after a retry
or revisit transformation has been applied. Notice that in both cases, there
are two segments on the stack after the return.? Notice also that in a revisit
transformation the recipe is preserved, whereas in a retry the recipe becomes
unbound.

In general, resetting the discourse state for a retry or revisit involves
an appropriate stop followed by resetting the stack and plan tree to their
states at either the start (retry) or end (revisit) of the selected segment. If
the segment being returned to (e.g., act2 in Figure 10) is, or its parent is,
on the history list, then the appropriate segment to stop is the segment at
the base of the stack (e.g., act6), thereby emptying the stack. Otherwise,
the appropriate segment to stop is the open sibling segment of the segment
being returned to, if any.

? Act1, the purpose of the parent of the segment being returned to, is glossed as “return-
ing to” rather than “retrying” or “revisiting,” because, in general, we could be returning
to the middle of it.



26 C. RICH AND C. L. SIDNER

(a) Before return:

(Stopped jointly doing act1 via recipe1)
(Stopped jointly doing act2 via recipe2)

AGENT: Act3.
USER: Act4.

(Done agent doing act5 via recipe5)
(User doing act6 on value1 via recipe6)

(b) Retry (return to start of) segment:

(Stopped jointly doing act1 via recipe1)
(Done agent doing act5 via recipe5)
(Stopped user doing act6 on value1 via recipe6)
(Returning to jointly doing act1 via recipe1)

(Retrying jointly doing act2)
USER: "Retry jointly doing act2."

(c) Revisit (return to end of) segment:

(Stopped jointly doing act1 via recipe1)
(Done agent doing act5 via recipe5)
(Stopped user doing act6 on value1 via recipe6)
(Returning to jointly doing act1 via recipe1)

(Revisiting jointly doing act2 via recipe2)
USER: "Revisit jointly doing act2 via recipe2."
AGENT: Act3.
USER: Act4.

Figure 10. Examples of returning.

5.2.2. Undo

Undo is the familiar transformation in which you want to pretend that you
never even started working on a goal. Undo is applicable only to open seg-
ments, or if the stack is empty, the most recent segment in the history list or
any of its terminating subsegments. For example, undoing act6 in the initial
state of Figures 7 and 10a would yield an empty stack and the following
history:

(Stopped jointly doing act1 via recipe1)
(Done agent doing act5 via recipe5)
(Undone user doing act6 on value1 via recipe6)

Resetting the discourse state to undo an open segment involves the same
steps as stopping that segment. The only difference is that with undo the
application state is also reset. Undoing the last (or terminating) segment
on the history list (when the stack is empty) requires only unbinding that
segment’s purpose from its parent in the plan tree.

5.3. Replay

Replay is a transformation which allows the user to reuse earlier work in a
slightly different, i.e., the current, context. The basic idea is that all of the



COLLAGEN 27

(Jointly scheduling a trip on the route via working forward, allowing 26 itineraries)
(Done user identifying route of scheduling a trip as San Francisco to Dallas to Boston,

allowing 100+ itineraries)
(Done user proposing a trip on the route be scheduled via working forward)
(Done user working on San Francisco to Dallas leg, allowing 70 itineraries)
(Done user working on Dallas to Boston leg, allowing 55 itineraries)

USER: Add Dallas stopover with arrival ... departure ...
USER: Change Dallas stopover to arrival ... departure ...
USER: Add Boston arrival ...
USER: Change Boston to arrival ...

(Done jointly specifying airlines, allowing 10 itineraries)
(Done user displaying itineraries)

(Retried user identifying route of scheduling a trip as Oakland to Dallas to Boston,
allowing 100+ itineraries)

USER: "Retry user identifying route of scheduling a trip."
USER: Add Oakland to the route.
USER: Add Dallas to the route, allowing 87 itineraries.
USER: Add Boston to the route, allowing 100+ itineraries.

(Done user working on Oakland to Dallas leg, allowing 93 itineraries)
(Replayed working on Dallas to Boston leg, allowing 8 itineraries)

USER: "Replay user working on Dallas to Boston leg."
AGENT: Add Dallas stopover with arrival ... departure ...
AGENT: Change Dallas stopover to arrival ... departure ...
AGENT: Add Boston arrival ...
AGENT: Change Boston to arrival ...

(Done user displaying itineraries)
(Revisiting jointly specifying airlines, allowing 26 itineraries)

USER: "Revisit jointly specifying airlines."
USER: Add American specification, allowing no itineraries.
(Done agent adding United specification, allowing 10 itineraries)

AGENT: "Propose I add United specification."
USER: "Ok."
AGENT: Add United specification, allowing 10 itineraries.

USER: Add USAir specification, allowing 26 itineraries.

Figure 11. Transformations in test application.

application acts in the selected segment are put together into one (possibly
hierarchical) “recipe,” which is then executed by the agent in the current
context.

When executing such a replay recipe, it is important for the agent to be
prepared for the possibility that some of the acts, e.g., adding an airline that
has already been specified, may not be valid in the current context. Depend-
ing on the specific details of the agent’s interface to the application, such
errors may need to be handled by application-specific code in the agent, or
may be taken care of by the application’s existing API or graphical interface.

Figure 11 is example of how replay can be used, together with returns, in
the test application. Notice that the scenario in this figure is a shorter trip
(only two legs) than the scenario in Section 2. The levels of expansion of the
history have been set to show only the details of interest. The segment that



28 C. RICH AND C. L. SIDNER

is going to be replayed is shown selected and underlining has been added to
highlight the three transformation segments.

To motivate this example, suppose that after displaying itineraries (see
the blank line in the middle of Figure 11), the user got the idea of trying to
leave from the nearby Oakland airport instead of San Francisco. In order to
pursue this alternative, she returned to (retried) the first subsegment in the
history, this time entering the route Oakland-Dallas-Boston on the map in
the application window. Notice that the application state at the end of this
retried segment did not include any city arrival/departure constraints.

Next, the user constrained her departure time from Oakland (“Done user
working on Oakland to Dallas leg” in the history). Then, instead of manually
(re-)entering the arrival/departure constraints for Dallas and Boston, she
requested replay of the selected segment.

After displaying and reviewing the possible itineraries starting in Oak-
land, however, the user decided to return to working on the San Francisco
route after all. In particular, at the end of Figure 11, she is revisiting the
earlier airline specification segment (fifth subsegment down from the top) in
order to see what happens if she adds USAir to the specified airlines.

6. Task Modelling

In order to use Collagen, an agent developer must provide a formal model
of the collaborative task(s) being performed by the agent and user. Defin-
ing this model is very similar to what is called “data modelling” in data
base or “domain modelling” in artificial intelligence (Brodie et al., 1982).
It also overlaps with modern specification practices in software engineering,
although the goals and recipes in a collaborative discourse model include
more abstract concepts than are usually formalized in current software prac-
tice, except for in expert or knowledge-based systems.

On the one hand, task modelling can be thought of as an unfortunate
hidden cost of applying our methodology. On the other hand, the need for
an explicit task model should be no surprise. From an artificial intelligence
point of view, what the task model does is add a measure of reflection—“self-
awareness,” so to speak—to a system. Reflection is a well-known technique
for improving the performance of a problem-solving system. From a software
engineering point of view, the task model can be thought of as part of the
general trend towards capturing more of the programmer’s design rationale
in the software itself. Also, since the agent need not rely on the task model
alone for its decision making, the model only needs to be complete enough
to support communication and collaboration with the user.

In the remainder of this section, we discuss and illustrate some of the
issues in building task models, starting with the artificial discourse language
and then moving on to the recipe library.



COLLAGEN 29

6.1. Artificial Discourse Language

As the internal representation for user and agent communication acts, we
use Sidner’s (1994) artificial discourse language. Sidner defines a collection
of constructors for basic act types, such as proposing, retracting, accepting,
and rejecting proposals. Our current implementation includes only two of
these act types: PFA (propose for accept) and AP (accept proposal).

PFA(t,participant1, belief, participant2)

The semantics of PFA are roughly: at time t, participant1 believes belief, com-
municates his belief to participant2 , and intends for participant2 to believe
it also. If participant2 responds with an AP act, e.g., “Ok”, then belief is
mutually believed.

Sidner’s language at this level is very general—the proposed belief may
be anything. For communicating about collaborative activities, we introduce
two application-independent operators for forming beliefs about actions:
SHOULD(act) and RECIPE(act,recipe).

The rest of the belief sublanguage is application-specific. For example,
to model our air travel application, we defined appropriate object types
(e.g., cities, flights, and airlines), relations (e.g., the origin and destination
of a flight), and goal/action constructors (e.g., scheduling a trip, adding an
airline specification).

Below are examples of how some of the communications in our example
scenario are represented in the artificial discourse language. In each exam-
ple, we show the internal representation of the communication followed by
the English gloss that is produced by a straightforward recursive substitu-
tion process using string templates associated with each operator. Italicized
variables below denote parameters that remain to be bound, e.g., by further
communication.

PFA(37,agent,SHOULD(add-airline(t,agent,ua)),user))
AGENT: "Propose I add United specification."

Notice below that a present participle template is used when the partic-
ipant performing an act is unspecified.

PFA(1,user,SHOULD(schedule(t,who,route)),agent)
USER: "Propose scheduling a trip."

Questions arise out of the embedding of PFA acts as shown below (route
is a constructor for route expressions).



30 C. RICH AND C. L. SIDNER

PFA(9,agent,
SHOULD(PFA(t1,user,

RECIPE(schedule(t2,who,route(bos,dfw,den,sfo,bos)),
recipe),

agent)),
user)

AGENT: "How should a trip on the route be scheduled?"

Notice that the glossing algorithm has some limited ability to introduce
definite references, such as “the route” above, based on the focus stack and
some application-specific heuristics.

6.2. Recipe Library

At its most abstract, a recipe is a resource used to derive a sequence of steps
to achieve a given goal (the objective of the recipe). Although very general,
application-independent recipes exist, such as divide and conquer, we are
primarily concerned here with application-specific recipes.

In our implementation, a recipe is concretely represented as a partially
ordered sequence of act types (steps) with constraints between them. The
recipe library contains recipes indexed by their objective. There may be
more than one recipe for each type of objective.

The recipe library for the test application contains 8 recipes defined in
terms of 15 different goal or action types. It is probably about half the size
it needs to be to reasonably cover the application domain.

Recipes with a fixed number of steps are easily represented in our simple
recipe formalism. However, in working on our test application, we quick-
ly discovered the need for more complicated recipes whose step structure
depends on some parameters of the objective. For example, two common
toplevel recipes for scheduling a trip are working forward and working back-
ward. The working-forward recipe works on the legs of a trip in order starting
with the first leg; the working-backward recipe starts with the last leg. In
both cases, the number of steps depends on the length of the route.

Rather than “hairing up” our recipe representation as each difficult case
arose, we decided instead to provide a general-purpose procedural alterna-
tive, called recipe generators. Recipes such as working forward/backward are
represented in Collagen as procedures which, given an objective, return a
recipe. A predicate can also be associated with a recipe to test whether it is
still applicable as it is being executed.

A related category of application-specific procedures in the recipe library
are recipe recognizers. These are primarily used for the bottom-up grouping
of a sequence of similar actions on the same object into a single abstract
action. For example, such a recognizer is invoked in our test application
when the user moves the same interval bar back and forth several times in
a row.



COLLAGEN 31

7. Local and Global Initiative in Conversation

Most work on initiative in conversation, e.g., (Clark and Schaeffer, 1989;
Walker and Whittaker, 1990; Traum and Hinkelman, 1992), has focused on
problems that are local to a discourse segment. Phenomena in this realm
include:
− turn taking and conversational control (who gets to speak next),
− interruptions, and
− grounding (how the current speaker indicates that she has heard and

understood the content of the previous speaker’s turn).
Other work, e.g., (Traum and Hinkelman, 1992; Green, 1994; Guinn, 1996;

Allen et al., 1996), has looked at initiative more globally in terms of “having
something to say.” This work tends to focus on the conversants’ problem-
solving level and on choosing appropriate speech acts or discourse plan oper-
ators.

In our view, an approach to the so-called “mixed initiative” issue in inter-
active systems must address both levels of phenomena: the global level of
having something to say that is relevant to what has recently been said or
done, and the local level, concerning when and how a participant gets the
opportunity to speak.

7.1. Global Initiative

The collaborative discourse theory upon which Collagen is based provides
strong support for dealing with the global constraints on initiative. The
maintenance of a discourse state representation and the agenda which is
computed from it by the discourse manager provides a Collagen-based agent
with an explicit choice of relevant things to say at most points in a conver-
sation. Given this architecture, there is no need for a separate collection
of discourse plan operators about “conversational moves” that compel the
agent to answer questions or perform actions requested of it (Chu-Carroll
and Brown, 1998). The agent’s cooperative behavior results directly from
the overall model of collaboration.

As discussed in Section 4.1, the Collagen architecture leaves it up to the
agent to decide between answering a question, performing an interface action
or choosing some other behavior because that is appropriately a function of
application-specific planning rather then discourse processing.

Recent research, e.g., (Guinn, 1994; Chu-Carroll and Carberry, 1994;
Chu-Carroll and Carberry, 1995), has also begun to consider negotiation
as part of global initiative. By negotiation, we mean the ability to resolve
differences in beliefs that are relevant to some shared goal. Negotiation is fun-
damental to collaboration because collaborators often have differing points
of view about the goals and recipes they undertake as well as the state of



32 C. RICH AND C. L. SIDNER

the world at any point in time. Collagen’s artificial language, in particu-
lar the full version described in (Sidner, 1994), is a start toward pursuing
this idea. However there is much more work to be done before Collagen can
incorporate a general negotiation facility.

7.2. Local Initiative

Because current theories of local initiative in conversation do not yet provide
general-enough algorithms for turn taking, control and grounding, Collagen
does not provide any support in these areas. We have, however, experimented
in our test agent for air travel planning with several ad hoc mechanisms for
local initiative, which we describe below.

One of the most basic local initiative concerns we needed to address in
our agent implementation was how the user relinquishes control to the agent.
For example, this needs to happen when the user decides she does not want
to contribute any further to the current SharedPlan and instead would like
to see what the agent can contribute. To support this specific behavior, we
designed the agent to interpret an “ok” said by the user (other than in
answer to a direct yes-no question) as an signal of relinquishing control.?

A second local initiative mechanism we built into the agent was a way
to get the user’s attention when the agent does not have control. Since it
was difficult and awkward to physically grab the user’s cursor in the mid-
dle of use, we gave the agent the ability to wave its cursor “hand” when
it has something important to contribute to the conversation.?? The result-
ing behavior is very humanlike and affecting. However, some observers of
our interface have urged us to just have the agent “barge into” the user’s
interaction with the application interface.

Finally, we agree with Walker and Whittaker’s (1990) observation that
many discourse initiative phenomena that appear to be local are in fact
dependent upon global constraints. More careful attention to global models
may result in theories that better explain both levels of mixed initiative.

8. Comparison with Other Work

This work lies at the intersection of many threads of related research in user
interface, linguistics, and artificial intelligence. It is unique, however, in its
combination of goals and techniques.

Most conventional work on user interface concentrates on optimizing the
appearance and functionality of a single interaction or a short sequence of
interactions. In contrast, our work is about supporting a user’s problem

? We also experimented with an alternate signal of having the user return her cursor to
the user home window for a period of two or three seconds, but found this was awkward.

?? We chose not to use computer keyboards sounds, such as bells, because they intro-
duced new medium for which we had no general framework.



COLLAGEN 33

solving process by relating current actions to the global context and history
of the interaction.

Our concept of a collaborative interface agent is closest to the work of
Maes (1994), although she uses the term “collaborative” to refer to the shar-
ing of information between multiple software agents, rather than collabora-
tion between the agent and the user. Cohen et al. (1994) has also developed
interface agents without collaborative discourse modelling. Terveen (1991)
has explored providing intelligent assistance through collaborative graphical
manipulation without explicit invoking the agent paradigm.

At a more abstract level, recent work on mixed-initiative systems by
Guinn (1998) and Cohen et al. (1998) treat collaboration as an extension of
single agent problem solving in which some designated participant has the
“task initiative” for each mutual goal. Cohen et al., for example, conclude
that task initiative depends on who is proposing a goal. In contrast, our work
is based on an underlying formalization (Grosz and Kraus, 1996) in which
collaboration is fundamentally a property of groups. Although this distinc-
tion is not highlighted in our current scenarios, it will become important in
future extensions.

Cohen (1992) and Jacob (1995), among others, have explored discourse-
related extensions to direct manipulation that incorporate anaphora and
make previous context directly available. However, most work on applying
human discourse principles to human-computer interaction, e.g., (Lambert
and Carberry, 1991; Yanklovich, 1994), have assumed that natural language
understanding will be applied to the user’s utterances

In Moore et al.’s work (Lemaire and Moore, 1994; Moore and Swartout,
1990), which focuses on explanation dialogues, users are presented with a full
textual history of their interaction with the system, from which they may
select any phrase as the context for a further query. Unlike our approach,
Moore’s history display has no explicit structure other than the alternation
of user and system utterances. Internally, however, Moore’s work does use
a deep representation of the user’s and system’s goals.

The basic idea underlying Collagen’s user communication menu, namely
replacing natural language understanding by natural language generation
based on the expectations of context, has also been used by Fischer (1994)
for cooperative information retrieval and by Mittal and Moore (1995) for
clarification subdialogues.

The three systems we know of that are overall closest in spirit to our own
are Stein and Maier’s MERIT (1995), subsequent work on MIRACLE by
Stein, Gulla and Thiel (1998), and Ahn et al.’s DenK (1995). MERIT and
MIRACLE use a different discourse theory, which is compiled into a less
flexible and less extensible finite-state machine representation. Neither of
these systems deal with actions that directly manipulate a graphical inter-



34 C. RICH AND C. L. SIDNER

face. DenK has the goal of providing a discourse-based agent, but has not
yet modelled collaboration.

9. Conclusions

In summary, applying the software agent paradigm and collaborative dis-
course theory to human-computer interaction in graphical user interfaces
has posed a number of challenges, including:
− applying discourse theory without requiring natural language under-

standing by the agent,
− embodying the application-independent aspects of the discourse algo-

rithms and data structures in a collaboration manager,
− and providing a modular description for application-specific informa-

tion.
We believe the current work has made a strong start toward these goals

and provides a new conceptual platform upon which we and others can now
build higher.

Our future plans include:
− improving the flexibility and robustness of the discourse processing algo-

rithms, especially as related to incompleteness of the agent’s recipe
library and handling parallel interleaved goals,

− supporting negotiation between the user and agent,
− a pilot user study to compare using the example application with and

without the interface agent, and
− using Collagen to build agents that operate remotely in space and time

(e.g., on the Internet), which will require more discussion between the
agent and user about past and future actions.

A major effort which has occupied much of the past year has been to reim-
plement the Collagen in Java. This effort is not yet complete at the time of
this writing. The Java implementation should greatly facilitate experimenta-
tion by other interested researchers, which we invite. Please visit our project
home page at http://www.merl.com/projects/collagen for up-to-date infor-
mation.

References

Ahn et al., R.: 1995, ‘The DenK-architecture: A Fundamental Approach to User-
Interfaces’. Artificial Intelligence Review 8, 431–445.

Allen et al., J. F.: 1996, ‘A Robust System for Natural Spoken Dialogue’. In: Proc. 34th
Annual Meeting of the ACL. pp. 62–70.

Bratman, M. E., D. J. Israel, and M. E. Pollack: 1988, ‘Plans and Resource-Bounded
Practical Reasoning’. Computational Intelligence 4(4), 349–355.

Brodie, M., J. Mylopoulos, and J. Schmidt (eds.): 1982, On Conceptual Modelling. New
York, NY: Springer-Verlag.



COLLAGEN 35

Chu-Carroll, J. and M. Brown: 1998, ‘An Evidential Model for Tracking Initiative in
Collaborative Dialogue Interactions’. User Modeling and User-Adapted Interaction. In
this issue.

Chu-Carroll, J. and S. Carberry: 1994, ‘A Plan-Based Model for Response Generation in
Collaborative Task-Oriented Dialogues’. In: Proc. 12th National Conf. on Artificial
Intelligence. Seattle, WA, pp. 799–805.

Chu-Carroll, J. and S. Carberry: 1995, ‘Response Generation in Collaborative Negotia-
tion’. In: Proc. 33rd Annual Meeting of the ACL. Cambridge, MA, pp. 136–143.

Clark, H. H. and E. F. Schaeffer: 1989, ‘Contributing to Discourse’. Cognitive Science
13(2), 259–294.

Cohen, P.: 1992, ‘The Role of Natural Language in a Multimodal Interface’. In: Proc. 5th
ACM Symp. on User Interface Software and Technology. Monterey, CA, pp. 143–149.

Cohen et al., P.: 1994, ‘An Open Agent Architecture’. In: O. Etzioni (ed.): Software
Agents, Papers from the 1994 Spring Symposium, SS-94-03. Menlo Park, CA: AAAI
Press, pp. 1–8.

Cohen et al., R.: 1998, ‘What is Initiative?’. User Modeling and User-Adapted Interaction.
In this issue.

Fischer, M., E. Maier, and A. Stein: 1994, ‘Generating Cooperative System Responses
in Information Retrieval Dialogues’. In: Proc. 7th Int. Workshop Natural Language
Generation. Kennebunkport, ME, pp. 207–216.

Green, N. L.: 1994, ‘A Computational Model for Generating and Interpeting Indirect
Answers’. Ph.D. thesis, Univ. of Delaware, Dept. of Computer and Info. Sci.

Grosz, B. J. and S. Kraus: 1996, ‘Collaborative Plans for Complex Group Action’. Artificial
Intelligence 86(2), 269–357.

Grosz, B. J. and C. L. Sidner: 1986, ‘Attention, Intentions, and the Structure of Discourse’.
Computational Linguistics 12(3), 175–204.

Grosz, B. J. and C. L. Sidner: 1990, ‘Plans for Discourse’. In: P. R. Cohen, J. L. Morgan,
and M. E. Pollack (eds.): Intentions and Communication. Cambridge, MA: MIT Press,
Chapt. 20, pp. 417–444.

Grosz [Deutsch], B. J.: 1974, ‘The Structure of Task-Oriented Dialogs’. In: IEEE Symp.
on Speech Recognition: Contributed Papers. Pittsburgh, PA, pp. 250–253.

Guinn, C. I.: 1994, ‘Meta-Dialogue Behaviors: Improving the Efficiency of Human-Machine
Dialogue—A Computational Model of Variable Initiative and Negotiation in Collabo-
rative Problem-Solving, Communication and Miscommunication’. Ph.D. thesis, Duke
University.

Guinn, C. I.: 1996, ‘Mechanisms for Mixed-Initiative Human-Computer Collaborative Dis-
course’. In: Proc. 34th Annual Meeting of the ACL. pp. 278–285.

Guinn, C. I.: 1998, ‘Principles of Mixed-Initiative Human-Computer Collaborative Dis-
course’. User Modeling and User-Adapted Interaction. In this issue.

Jacob, R. J. K.: 1995, ‘Natural Dialogue in Modes other than Natural Language’. In: R.-J.
Beun, M. Baker, and M. Reiner (eds.): Dialogue and Instruction. Berlin: Springer-
Verlag, pp. 289–301.

Kautz, H.: 1990, ‘A Circumscriptive Theory of Plan Recognition’. In: P. R. Cohen, J. L.
Morgan, and M. E. Pollack (eds.): Intentions and Communication. Cambridge, MA:
MIT Press, Chapt. 6, pp. 105–133.

Kowtko, J. C. and P. Price: 1989, ‘Data Collection and Analysis in the Air Travel Planning
Domain’. In: DARPA Workshop Proc. Cape Cod, MA.

Lambert, L. and S. Carberry: 1991, ‘A Tripartite Plan-Based Model of Dialogue’. In: Proc.
29th Annual Meeting of the ACL. Berkeley, CA.

Lemaire, B. and J. Moore: 1994, ‘An Improved Interface for Tutorial Dialogues: Browsing
a Visual Dialogue History’. In: Proc. ACM SIGCHI Conference on Human Factors in
Computing Systems. Boston, MA, pp. 16–22.

Lochbaum, K. E.: 1994, ‘Using Collaborative Plans to Model the Intentional Structure of
Discourse’. Technical Report TR-25-94, Harvard Univ., Ctr. for Res. in Computing
Tech. PhD thesis.



36 C. RICH AND C. L. SIDNER

Lochbaum, K. E.: 1995, ‘The Use of Knowledge Preconditions in Language Processing’. In:
Proc. 14th Int. Joint Conf. Artificial Intelligence. Montreal, Canada, pp. 1260–1266.

Lochbaum, K. E.: 1998, ‘A Collaborative Planning Model of Intentional Structure’. Com-
putational Linguistics. Forthcoming.

Maes, P.: 1994, ‘Agents that Reduce Work and Information Overload’. Comm. ACM
37(17), 30–40. Special Issue on Intelligent Agents.

Meyers et al., B.: 1990, ‘Garnet: Comprehensive Support for Graphical, Highly-Interactive
User Interfaces’. IEEE Computer 23(11), 71–85.

Mittal, V. and J. Moore: 1995, ‘Dynamic Generation of Follow-up Question Menus: Facil-
itating Interactive Natural Language Dialogues’. In: Proc. ACM SIGCHI Conference
on Human Factors in Computing Systems. Denver, CO, pp. 90–97.

Moore, J. and W. Swartout: 1990, ‘Pointing: A Way Toward Explanation Dialogue’. In:
Proc. 8th National Conf. on Artificial Intelligence. Menlo Park, CA, pp. 457–464.

Rich, C.: 1996, ‘Window Sharing with Collaborative Interface Agents’. ACM SIGCHI
Bulletin 28(1), 70–78.

Rich, C. and C. Sidner: 1996, ‘Adding a Collaborative Agent to Graphical User Interfaces’.
In: Proc. 9th ACM Symp. on User Interface Software and Technology. Seattle, WA,
pp. 21–30.

Rich, C. and C. Sidner: 1997a, ‘Collagen: When Agents Collaborate with People’. In:
Proc. 1st Int. Conf. on Autonomous Agents. Marina del Rey, CA, pp. 284–291.

Rich, C. and C. Sidner: 1997b, ‘Segmented Interaction History in a Collaborative Interface
Agent’. In: Proc. Int. Conf. on Intelligent User Interfaces. Orlando, FL, pp. 23–30.

Sidner, C. L.: 1994, ‘An Artificial Discourse Language for Collaborative Negotiation’. In:
Proc. 12th National Conf. on Artificial Intelligence. Seattle, WA, pp. 814–819.

Stein, A. and E. Maier: 1995, ‘Structuring Collaborative Information-Seeking Dialogues’.
Knowledge-Based Systems 8(2-3), 82–93.

Stein, A., E. Maier, and U. Thiel: 1998, ‘User-Tailored Planning of Mixed Initiative Infor-
mation Seeking Dialogues’. User Modeling and User-Adapted Interaction. In this issue.

Terveen, G., D. Wroblewski, and S. Tighe: 1991, ‘Intelligent Assistance through Collab-
orative Manipulation’. In: Proc. 12th Int. Joint Conf. Artificial Intelligence. Sydney,
Australia, pp. 9–14.

Traum, D. R. and E. A. Hinkelman: 1992, ‘Conversation Acts in Task-Oriented Spoken
Dialogue’. Computational Intelligence 8(3), 575–599.

Walker, M. A. and S. Whittaker: 1990, ‘Mixed Initiative in Dialogue: An Investigation
into Discourse Segmentation’. In: Proc. 28th Annual Meeting of the ACL. pp. 70–79.

Yanklovich, N.: 1994, ‘Talking vs. Taking: Speech Access to Remote Computers’. In: Proc.
ACM SIGCHI Conference on Human Factors in Computing Systems. Boston, MA, pp.
275–276.


	Title Page
	Title Page
	page 2


	COLLAGEN: A Collaboration Manager for Software Interface Agents
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38


