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Abstract

Image intensity variations can result from several different object surface effects, including shad-
ing from 3-dimensional relief of the object, or paint on the surface itself. An essential problem in
vision, which people solve naturally, is to attribute the proper physical cause, e.g. surface relief
or paint, to an observed image. We addressed this problem with an approach combining psy-
chophysical and Bayesian computational methods. We assessed human performance on a set of
test images, and found that people made fairly consistent judgements of surface properties. Our
computational model assigned simple prior probabilities to different relief or paint explanations
for an image, and solved for the most probable interpretation in a Bayesian framework. The
ratings of the test images by our algorithm compared surprisingly well with the mean ratings of
our subjects.
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Abstract

Image intensity variations can result from several di�erent object
surface e�ects, including shading from 3-dimensional relief of the
object, or paint on the surface itself. An essential problem in vision,
which people solve naturally, is to attribute the proper physical
cause, e.g. surface relief or paint, to an observed image. We ad-
dressed this problem with an approach combining psychophysical
and Bayesian computational methods.

We assessed human performance on a set of test images, and found
that people made fairly consistent judgements of surface properties.
Our computational model assigned simple prior probabilities to
di�erent relief or paint explanations for an image, and solved for
the most probable interpretation in a Bayesian framework. The
ratings of the test images by our algorithm compared surprisingly
well with the mean ratings of our subjects.

To appear in: Neural Information Processing Systems 10, 1998.

1 Introduction

When people study a picture, they can judge whether it depicts a shaded, 3-
dimensional surface, or simply a 
at surface with markings or paint on it. The
two images shown in Figure 1 illustrate this distinction [1]. To many observers
Figure 1a appears to be a raised plateau lit from the left. Figure 1b is simply a
re-arrangement of the local features of 1a, yet it does not give an impression of
shape or depth. There is no simple correct answer for this problem; either of these
images could be explained as marks on paper, or as illuminated shapes. Neverthe-
less people tend to make particular judgements of shape or re
ectance. We seek an
algorithm to arrive at those same judgements.

There are many reasons to study this problem. Disentangling shape and re
ectance



is a prototypical underdetermined vision problem, which biological vision systems
routinely solve. Insights into this problem may apply to other vision problems
as well. A machine that could interpret images as people do would have many
applications, such as the interactive editing and manipulation of images. Finally,
there is a large body of computer vision work on \shape from shading"{inferring
the 3-dimensional shape of a shaded object [4]. Virtually every algorithm assumes
that all image intensity changes are caused by shading; these algorithms fail for any
image with re
ectance changes. To bring this body of work into practical use, we
need to be able to disambiguate shading from re
ectance changes.

There has been very little work on this problem. Sinha and Adelson [9] examined
a world of painted polyhedra, and used consistancy constraints to identify regions
of shape and re
ectance changes. Their consistancy constraints involved speci�c
assumptions which need not always hold and may be better described in a prob-
abilistic framework. In addition, we seek a solution for more general, greyscale
images.

Our approach combines psychophysics and computational modeling. First we will
review the physics of image formation and describe the under-constrained surface
perception problem. We then describe an experiment to measure the interpretations
of surface shading and re
ectance among di�erent individuals. We will see that the
judgements are fairly consistent across individuals and can be averaged to de�ne
\ground truth" for a set of test images. Our approach to modeling the human
judgements is Bayesian. We begin by formulating prior probabilities for shapes and
re
ectance images, in the spirit of recent work on the statistical modeling of images
[5, 8, 11]. Using these priors, the algorithm then determines whether an image is
more likely to have been generated by a 3D shape or as a pattern of re
ectance.
We compare our algorithm's performance to that of the human subjects.
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Figure 1: Images (a) and (b), designed by Adelson [1], are nearly the same
everywhere, yet give di�erent percepts of shading and re
ectance. (a) looks like
a plateau, lit from the left; (b) looks like marks on paper. Illustrating the under-
constrained nature of perception, both images can be explained either by re
ectance
changes on paper (they are), or, under appropriate lighting conditions, by the
shapes (c) and (d), respectively (vertical scale exaggerated).



2 Physics of Imaging

One simple model for the generation of an image from a three dimensional shape is
the Lambertian model:

I(x; y) = R(x; y)
�
l̂ � n̂(x; y)

�
; (1)

where I(x; y) is an image indexed by pixel location, n̂(x; y) is the surface normal at
every point on the surface conveniently indexed by the pixel to which that surface
patch projects, l̂ is a unit vector that points in the direction of the light source,
and R(x; y) is the re
ectance at every point on the surface1. A patch of surface
is brighter if the light shines onto it directly and darker if the light shines on it
obliquely. A patch can also be dark simply because it is painted with a darker
pigment. The shape of the object is probably more easily described as a depth map
z(x; y) from which n̂(x; y) is computed.

The classical \shape from shading" task attempts to compute z from I given knowl-
edge of l̂ and assuming R is everywhere constant. Notice that the problem is \ill-
posed"; while I(x; y) does constrain n̂(x; y) it is not su�cient to uniquely determine
the surface normal at each pixel. Some assumption about global properties of z is
necessary to condition the problem. If R is allowed to vary, the problem becomes
even more under-constrained. For example, R = I and n̂(x; y) = l̂ is a valid solution
for every image. This is the \all re
ectance" hypothesis, where the inferred surface
is 
at and all of the image variation is due to re
ectance. Interestingly there is also
an \all shape" solution for every image where R = 1 and I(x; y) = l̂ � n̂(x; y) (see
Figure 1 for examples of such shapes).

Since the relationship between z and I is non-linear, \shape from shading" cannot
be solved directly and requires a time consuming search procedure. For our com-
putational experiments we seek a rendering model for shapes which simpli�es the
mathematics, yet maintains the essential ambiguities of the problem. We use the ap-
proximations of linear shading [6]. This involves two sets of approximations. First,
that the rendered image I(x; y) is some function, G(@z

@x
; @z
@y
), only of the surface

slope at any point:

I(x; y) � G(
@z

@x
;
@z

@y
): (2)

The second approximation is that the rendering function G itself is a linear function
of the surface slopes,

G(
@z

@x
;
@z

@y
) � k1 + k2

@z

@x
+ k3

@z

@y
: (3)

Under linear shading, �nding a shape which explains a given image is a trivial
integration along the direction of the assumed light source. Despite this simplicity,
images rendered under linear shading appear fairly realistically shaded [6].

3 Psychophysics

We used a survey to assess subjects' image judgements. We made a set of 60 test
images, using Canvas and Photoshop programs to generate and manipulate the
images. Our goal was to create a set of images with varying degrees of shadedness.
We sought to assess to what extent each subject saw each image as created by

1Note: we assume orthographic projection, a distant light source, and no shadowing.



shading changes or re
ectance changes. Each of our 18 naive observers was given a
4 page survey showing the images in a di�erent random order.

To explain the problem of image interpretation quickly to naive subjects, we used
a concrete story (Adelson's Theater Set Shop analogy [2] is a related didactic ex-
ample). The survey instructions were as follows:

Pretend that each of the following pictures is a photograph of work
made by either a painter or a sculptor.

The painter could use paint, markers, air brushes, computer, etc.,
to make any kind of mark on a 
at canvas. The paint had no
3-dimensionality; everything was perfectly 
at.

The sculptor could make 3-dimensional objects, but could make no
markings on them. She could mold, sculpt, and scrape her sculp-
tures, but could not draw or paint. All the objects were made out
of a uniform plaster material and were made visible by lighting and
shading e�ects.

The subjects used a 5-point rating scale to indicate whether each image was made
by the painter (P) or sculptor (S): S, S?, ?, P?, P.

3.1 Survey Results

We examined a non-parametric comparison of the image ratings, the rank order
correlation (the linear correlation of image rankings in order of shapeness by each
observer) [7]. Over all possible pairings of subjects, the rank order correlations
ranged from 0.3 to 0.9, averaging 0.65. All of these correlations were statistically
signi�cant, most at the 0.0001 level. We concluded that for our set of test images,
people do give a very similar set of interpretations of shading and re
ectance.

We assigned a numerical value to each of the 5 survey responses (S=2; S?=1; ?=0;
P?=-1; P=-2) and found the average numerical \shadedness" score for each image.
Figure 2 shows a histogram of the survey responses for each image, ordered in
decreasing order of shadedness. The two images of Figure 1 had average scores of 1.7
and -1.6, respectively, con�rming the impressions of shading and re
ectance. There
was good consensus for the rankings of the most paint-like and most sculpture-
like images; the middle images showed a higher score variance. The rankings by
each individual showed a strong correlation with the rankings by the average of the
remaining subjects, ranging from 0.6 to 0.9. Figure 4 shows the histogram of those
correlations. The ordering of the images by the average of the subjects' responses
provides a \ground truth" with which to compare the rankings of our algorithm.
Figure 3, left, shows a randomly chosen subset of the sorted images, in decreasing
order of assessed sculptureness.

4 Algorithm

We will assume that people are choosing the most probable interpretation of the
observed image. We will adopt a Bayesian approach and calculate the most probable
interpretation for each image under a particular set of prior probabilities for images
and shapes. To parallel the choices we gave our subjects, we will choose between
interpretations that account for the image entirely by shape changes, or entirely
by re
ectance changes. Thus, our images are either a rendered shape, multiplied
by a uniform re
ectance image, or a 
at shape, multiplied by some non-uniform
re
ectance image.
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Figure 2: Histogram of survey responses. Intensity shows the number of responses
of each score (vertical scale) for each image (horizontal, sorted in increasing order
of shapeness).

To �nd the most probable interpretation, given an image, we need to assign prior
probabilities to shape and re
ectance con�gurations. There has been recent inter-
est in characterizing the probabilities of images by the expected distributions of
subband coe�cient values [5, 8, 11]. The statistical distribution of bandpass linear
�lter outputs, for natural images, is highly kurtotic; the output is usually small,
but in rare cases it takes on very large values. This non-gaussian behavior is not a
property of the �lter operation, because �ltered \random" images appear gaussian.
Rather it is a property of the structure of natural images. An exponential distri-
bution, P (c) / e�jcj, where c is the �lter coe�cient value, is a reasonable model.
These priors have been used in texture synthesis, noise removal, and receptive �eld
modeling. Here, we apply them to the task of scene interpretation.

We explored using a very simple image prior:

P (I) / exp (�
X
x;y

s
@I(x; y)

@x

2

+
@I(x; y)

@y

2

) (4)

Here we treat the image derivative as an image subband corresponding to a very
simple �lter. We applied this image prior to both re
ectance images, I(x; y), as
well as range images, z(x; y).

For any given picture, we seek to decide whether a shape or a re
ectance explanation
is more probable. The proper Bayesian approach would be to integrate the prior
probabilities of all shapes which could explain the image in order to arrive at the
total probability of a shape explanation. (The re
ectance explanation, R̂ is unique;
the image itself). We employed a computationally simpler procedure, a very rough

approximation to the proper calculation: we evaluated the prior probability, P (Ŝ)

of the single, most probable shape explanation, Ŝ, for the image. Using the ratio
test of a binary hypothesis, we formed a shapeness index, J , by the ratio of the

probabilities for the shape and re
ectance explanations, J = P (Ŝ)

P (R̂)
. The index J

was used to rank the test images by shapeness.

We need to �nd the most probable shape explanation. The overall log likelihood of
a shape, z, given an image is, using the linear shading approximations of Eq. (3):

logP (z; k1; k2; k3jI) = logP (Ijz; k1; k2; k3) + logP (z) + c

=
P

x;y
(I � k1 + k2

@z
@x

+ k3
@z
@y

)2 +
P

x;y

q
@z
@x

2

+ @z
@y

2

+ c;

(5)
where c is a normalization constant. We use a multi-scale gradient descent algorithm
that simultaneously determines the optimal shape and illumination parameters for
an image (similar to that used by [10]). The optimization procedure has three
stages starting with a quarter resolution version of I , and moving to the half and
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Figure 3: 28 of the 60 test images, arranged in decreasing order of subjects'
shapeness ratings. Left: Subjects' rankings. Right: Algorithm's rankings.

then full resolution. The solution found at the low resolution is interpolated up to
the next level and is used as a starting point for the next step in the optimization.
In our experiments images are 128x128 pixels. The optimization procedure takes
4000 descent steps at each resolution level.

5 Results

Surprisingly, the simple prior probability of Eq. (4) accounts for much of the ratings
of shading or paint by our human subjects. Figure 3 compares the rankings (shown
in raster scan order) of a subset of the test images for our algorithm and the average
of our subjects. The overall agreement is good. Figure 4 compares two measures: (1)
the correlations (dark bars) of the subjects' individual ratings to the mean subject
rating with (2) the correlation of our algorithm's ratings to the mean subject rating.
Subjects show correlations between 0.6 and 0.9; our Bayesian algorithm showed a
correlation of 0.64. Treating the mean subjects' ratings as the right answer, our
algorithm did worse than most subjects but not as badly as some subjects.

Figure 1 illustrates how our algorithm chooses an interpretation for an image. If a
simple shape explains an image, such as the shape explanation (c) for image (a),
the shape gradient penalties will be small, assigning a high prior probability to that
shape. If a complicated shape (d) is required to explain a simple image (b), the



low prior probability of the shape and the high prior probability of the re
ectance
image will favor a \paint" explanation.

We noted that many of the shapes inferred from paint-like images showed long
ridges coincidently aligned with the assumed light direction. The assumption of
generic light direction can be applied in a Bayesian framework [3] to penalize such
coincidental alignments. We speculate that such a term would further penalize
those unlikely shape interpretations and may improve algorithm performance.
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Figure 4: Correlation of individual subjects' image ratings compared with the
mean rating (bars) compared with correlation of algorithm's rating with the mean
rating (dashed line).
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