
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Architectures for Real-Time Volume
Rendering

Hanspeter Pfister

TR99-18 April 1999

Abstract

Over the last decade, volume rendering has become an invaluable visualization technique for a
wide variety of applications. This paper reviews three special-purpose architectures for interac-
tive volume rendering: texture mapping, VIRIM, and VolumePro. Commercial implementations
of these architectures are available or underway. The discussion of each architecture will focus
on the algorithm, system architecture, memory system, and volume rendering performance.

Future Generation Computer Systems, Vol. 15, 1999

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1999
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

MERL – A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Architectures for Real-Time Volume
Rendering

Hanspeter Pfister
Mitsubishi Electric Research, 201 Broadway

Cambridge, MA 02139, U.S.A.
pfister@merl.com

TR-99-18 April 1999

Abstract

Over the last decade, volume rendering has become an invaluable visualization tech-
nique for a wide variety of applications. This paper reviews three special-purpose ar-
chitectures for interactive volume rendering: texture mapping, VIRIM, and VolumePro.
Commercial implementations of these architectures are available or underway. The dis-
cussion of each architecture will focus on the algorithm, system architecture, memory
system, and volume rendering performance.
Color pictures are available at http://www.elsevier.nl/locate/future.

Appeared in Future Generation Computer Systems, Vol. 15, 1999

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Information Technology Center America; an acknowledgment of the authors and individual contributions to the work;
and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Information Technology Center America. All rights reserved.

Copyright c
 Mitsubishi Electric Information Technology Center America, 1999
201 Broadway, Cambridge, Massachusetts 02139

Accepted at FGCS 9 September, 1998

1

1 Introduction

Visualization of scientific, engineering or biomedical data is a growing field within computer graphics.
In many cases, the objects or phenomena being studied are volumetric, typically represented as a three-
dimensional grid of volume elements, or voxels. Examples of volume data include 3D sampled medical data
(CT, MRI), simulated datasets from computational fluid dynamics, or computed finite element models. One
of the key advantages of volumetric data is that, unlike surface-based representations, it can embody interior
structure of the objects. Additionally, operations such as cutting, slicing, or tearing, while challenging for
surface-based models, can be performed relatively easily with a volumetric representation [Gib97].

Volume rendering generates images directly from the volume data without intermediate surface models.
It allows the display of internal structures, including amorphous and semi-transparent features. Voxels are
either processed in image-order or object-order to generate an image. Image-order algorithms iterate over
all pixels of the output image and determine the contributions of voxels towards each pixel. Ray-casting is
the most commonly used image-order technique [Lev88]. Rays are cast from the viewpoint into the volume
and the contributions of voxels along each ray are used to determine pixel colors. Object-order algorithms
iterate over the volume data and determine the contribution of each voxel to the pixels. A typical object-order
technique is splatting, which convolves every voxel with a 3D reconstruction filter and accumulates the voxels
contribution on the image plane [Wes91].

While volume rendering is a very popular visualization technique, the lack of interactive frame-rates has
limited its widespread use. Volume rendering is very memory and computation intensive. To render one
frame typically takes several seconds. Highly optimized software techniques for volume rendering try to
address this problem by using pre-processing to compute, for example, object illumination or regions of the
volume that can be skipped during rendering [LL94, Lev90]. However, pre-processing prohibits immediate
visual feedback during parameter changes. Each time rendering parameters such as voxel transparency or
illumination are changed, the lengthy pre-processing must be repeated before the new image is displayed.
Furthermore, the pre-computed values typically increase the storage requirements by a factor of three to four.

To overcome these limitations, several Universities (e.g., University of Mannheim [GPR+94], Univer-
sity of Tübingen [KS94, KS97], State University of New York at Stony Brook [PK96, BK97]) and compa-
nies (e.g., Mitsubishi Electric [OPL+97] and Japan Radio Corporation) have undertaken the development of
special-purpose hardware for volume rendering. Hardware accelerators aim to provide real-time frame rates,
typically defined to be between 10 and 30 frames per second. Real-time visual feedback allows for inter-
active experimentation with different rendering parameters. In addition, because hardware does not require
pre-processing, it allows visualization of dynamically changing volume data, such as data from interactive
tissue cutting during surgical simulation, or continuous data input from 3D ultrasound.

The next section presents general issues related to the design of high-performance volume rendering
architectures. The focus is on the design of high-bandwidth memory systems which are the basis for all
architectures presented in this paper. Sections 3 through 5 present the architectures of texture mapping,
VIRIM, and VolumePro, respectively. Section 6 concludes the paper with a brief summary of the main
features of these architectures.

2 Architectural Challenges

The computational demands of volume rendering require the use of a high degree of hardware parallelism.
Pipelining and unit replication are the two main forms of parallelism found in most high-performance ar-
chitectures. A pipeline consists of a sequence of stages through which a computation and data flow. New
data is input at the start of the pipeline while other data is being processed throughout the pipeline. Unit
replication refers to using multiple processing units, each working on a different stream of data. Combining
pipelining and unit replication by using parallel processing pipelines achieves a high level of parallelism and
performance. Important issues are the interconnections and data paths between stages of different pipelines.

MERL-TR-99-18 April 1999

2

Because volume rendering is memory intensive, the design of the memory system is critical in volume
rendering architectures. The memory systems includes a suitable memory hierarchy, fast memory caches,
and memory bus architecture. A determining factor of the maximum achievable memory bandwidth is the
performance of dynamic random-access memory (DRAM), the fundamental building block of all memory
systems. In the last 30 years the speed of microprocessors has increased 1000-fold whereas the speed of
DRAM has only increased by a factor of 20 [Sak97]. As shown in Figure 1, recent architectural improvements
to DRAM modules have increased their sequential access bandwidth [Kat97]. However, their random access
performance remains low and approximately constant across different DRAM technologies.

EDO

125

11 12.5

DRAM

50 MB/s

100 MB/s

Fast Page
Mode DRAM

16

Memory
Random Access
Sequential Access

Bandwidth

Rambus

50

600

11
29

SDRAM

500 MB/s

10 MB/s

Figure 1:This graph plots memory bandwidth (in MBytes per second, logarithmic scale) for different DRAM
technologies.Fast page mode DRAMallows fast access to an entire row (called a page) of the internal
memory array.Extended data out DRAM(EDO DRAM) includes an extra pipeline stage in the output buffer.
Synchronous DRAM(SDRAM) has a high-speed synchronous interface and multiple internal memory banks.
Rambus DRAMuses a high-speed packet-type memory interface.

A common method to increase memory bandwidth for regular, systematic access to data is a technique
called interleaving. The idea is to subdivide the data into smaller subsets that can be distributed uniformly
among different physical memories. The simplest and most common form of interleaving is called low-
order interleaving [Fly95]. It assigns successive memory addresses to distinct memory modules. Form

memory modules, enumerated from 0 to(m � 1), memory addressa is assigned memory module number
k = a mod m.

Figure 2 shows the resulting partitioning of the address space across memory modules. The indexi into
the memory module is calculated asi = b a

m
c, wherebc indicates the floor, or the next lower integer, of

the expression. The number of memory modules in an interleaved memory system is called the degree of
interleaving. Alternatively, a memory system is said to bem-way interleaved.

Notice in Figure 2 that voxels are stored successively in rows across the memory. Low-order interleaved
memory performs best for consecutive row access, but performance breaks down for column access. Accesses
against the storage order may occur frequently in volume rendering, for example, in object-order algorithms.
One solution is to store the dataset three times, once for each main axis [LL94]. However, data duplication
increases the high storage requirements of volume rendering.

The architectures surveyed in this paper implement interleaved memory systems that support high-bandwidth
access to volume data without pre-processing and data duplication. The remainder of this paper describes
texture mapping hardware, the Virtual Reality in Medicine (VIRIM) system, and Mitsubishi’s VolumePro
system. We discuss the algorithms these systems implement, their system architectures with emphasis on the
memory system, and their volume rendering performances.

MERL-TR-99-18 April 1999

3

0

m

00
1
2

Module
 Number

m+1

1

2m+1

m+2

2m+2

2 m-1

2m-1

3m-1

Memory ModuleIndex

2m

1 2 m-10

m

00
1
2

Module
 Number

m+1

1

2m+1

m+2

2m+2

2 m-1

2m-1

3m-1

Memory ModuleIndex

2m

1 2 m-1

Figure 2:Low-order interleaved memory system withm memory modules. Memory addressa is assigned to
memory modulek according tok = a mod m.

3 Texture Mapping Hardware

Texture mapping hardware is a common feature of modern 3D polygon graphics accelerators. It can be used
for volume rendering by applying a method calledplanar texture resampling[CCF94]. The volume is stored
in 3D texture memory and resampled during rendering by extracting textured planes parallel to the image
plane (see Figure 3). Lookup tables map density to RGBA color and opacity. The resulting texture images

a) Object-space
Sample Planes

b) Image-space
Sample Planes

Figure 3:Planar texture resampling.

are combined in back-to-front visibility order using compositing [PD84]. Each texture sample is assigned an
opacity, called the alpha component. An alpha of 1.0 implies a fully opaque sample, and an alpha value of 0.0
implies a fully transparent sample. When two texture images are combined, the background color is blended
with the foreground color using the alpha component to linearly interpolate between the colors.

High-quality shading effects of the volume object require gradients which reflect the rate and direction of
change in the volume data. Most volume rendering algorithms use the central difference gradient, which is
computed by local differences between voxel values in all three dimensions [HB86]. Using these gradients,
a local illumination model is applied to each texture sample to shade the volume object.

MERL-TR-99-18 April 1999

4

Figure 4 shows several texture mapped images of a wrist rendered with different gradient methods.

(a) (b) (c) (d)

Figure 4:Several renderings of a wrist dataset (256� 256� 53) using texture mapping hardware and multi-
pass gradient estimation. a) 1 pass: No shading. b) 2 passes: Slices of gradients are calculated by subtracting
co-planar texture slices, one shifted in direction of the light source. c) 3 passes: Gradients are resampled from
a separate edge filtered volume. d) 10 passes: Gradients are estimated using central differences between axis
aligned texture slices in all three dimensions. Images courtesy of David Heath, Johns Hopkins University.

Texture engines do not directly support estimation of gradients or per-sample illumination in hardware.
Gradients are typically pre-computed and stored in an additional volume or are computed on-the-fly using
multi-pass methods. However, multi-pass rendering and shading in software greatly reduce the achievable
frame rate. An alternative is to use a shading approximation by pairwise subtracting co-planar texture slices,
one shifted in direction of the light source [PAC97].

System Architecture
Texture mapping hardware is part of the raster graphics rendering pipeline shown in Figure 5 [FvDFH90].

During planar texture resampling, the geometry processor computes the texture coordinates of each vertex of

Geometry
Processor

Rasterizer Frame
Buffer

Display

Texture Memory
Texture
Engine

Figure 5:Texture mapping system architecture.

a resampling slice. The rasterizer is connected to the texture engine which resamples the texture data stored
in texture memory using tri-linear interpolation. The resampled texture slices are then accumulated into the
frame buffer using compositing [PD84].

High-performance 3D graphics engines, such as the SGI Reality Engine [Ake93], use eight-way inter-
leaved texture memory. Tri-linear interpolation requires a cell of eight adjacent voxels. Eight-way memory
interleaving allows the texture engine to fetch any tri-linear cell in one memory access. A voxel with address
a = [zyx] is stored in memory modulek at indexi as follows:

k = (x mod 2) + 2 (y mod 2) + 4 (z mod 2); (1)

i = b
x

2
c+ 2 b

y

2
c+ 4 b

z

2
c:

Figure 6 shows the resulting assignment of voxels to memory modules in three dimensions.
Texture Performance

MERL-TR-99-18 April 1999

5

������
������
������

������
������
������

���
���
���

���
���
���

Memory Module 0

Memory Module 1

Memory Module 2

Memory Module 3

Memory Module 4

Memory Module 5

Memory Module 6

Memory Module 7

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

������������
������������
������������
������������
������������

������������
������������
������������
������������
������������

������������
������������
������������
������������
������������

������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Z
Y

X

Figure 6:Assignment of voxels to memory modules in an 8-way interleaved texture memory.

The best published texture rendering performances have been achieved on SGI Reality Engine 2 systems
with multiple texture engines or Raster Managers (RMs). Hemminger et. al [HCN94] report a series of results
with two RMs, rendering a256� 256� 32 volume at 12 frames per second. Cabral et al. [CCF94] use four
RMs to render a512 � 512 � 64 dataset at 10 frames per second. These results translate roughly into a
maximum performance of 160 million unshaded tri-linear samples per second for four RMs. However, these
published results do not consider gradient estimation or shading.

4 Virtual Reality in Medicine (VIRIM)

VIRIM is an object-order volume rendering engine developed and built at the University of Mannheim
[GPR+94] and commercially distributed by the Volume Graphics GmbH, Heidelberg, Germany. VIRIM
implementsprojection plane ray-casting. In this method, the rays belonging to a particular scanline of the
image reside on the same projection plane (see Figure 7). Planes of consecutive scanlines are resampled in

Projection Plane

Scanline

Image

Volume Data

Ray

Figure 7:Projection plane ray-casting.

top-to-bottom order from the volume data. The image is produced by casting rays in viewing direction inside
projection planes.

System Architecture
The hardware of VIRIM is divided into a geometry unit for volume resampling and a ray-casting unit

for image generation (see Figure 8). Resampling of the dataset is performed by tri-linear interpolation. The

MERL-TR-99-18 April 1999

6

LUT
Weight

Address
Generator

Density Lookup Tables

8-way Interleaved Memory

Bus (48 bits @ 40 MHz, 240 MB/s)

Processor
Master

Processor
Master

DSP Rendering Proc’s DSP Rendering Proc’s

Host

Ray-Casting
Unit

Interpolation
X/Y Gradient Processor

Density Y-GradientX-Gradient

Geometry Unit

Figure 8:VIRIM Architecture.

MERL-TR-99-18 April 1999

7

volume data is stored in a dedicated 8-way interleaved memory system, identical in organization to the 3D
texture memory discussed in Section 3. Before interpolation, the voxel values are mapped onto density values
using a density lookup table). Only the X- and Y-component of the gradient are estimated using a 2D gradient
operator. The sample density and the X- and Y-gradient components are transmitted to the ray-casting unit
over the geometry bus which has a peak transfer rate of 240 MBytes per second.

Using the sample and gradient values of the resampled dataset, the ray-casting unit generates the final
image. In order to allow maximum flexibility, VIRIM uses 16 programmable digital signal processors (DSPs).
This allows the system to implement high-quality illumination models, such as the Heidelberg ray-tracing
algorithm which includes shadowing [MMSE91]. A local master processor on the ray-casting board collects
all scan lines of the final image from the DSP memories and transfers the results to the host system.

VIRIM Performance
The maximum dataset size for 16-bit voxels is2563, and the maximum read-out rate from volume memory

is 640 MBytes per second. VIRIM achieves up to 2.5 frames per second for256�256�128datasets, although
higher performance may be achieved by duplicating the dataset across multiple VIRIM engines [HMK+95].
The VIRIM geometry unit generates a maximum of 36 million tri-linear samples per second.

5 VolumePro

The VolumePro system is based on the Cube-4 volume rendering architecture developed at SUNY Stony
Brook [PK96]. Mitsubishi Electric licensed the Cube-4 technology and developed the Enhanced Memory
Cube-4 (EM-Cube) architecture [OPL+97]. The VolumePro system, an improved commercial version of
EM-Cube, is currently underway at Mitsubishi Electric.

VolumePro is a highly parallel architecture based on thetemplate-based ray-castingalgorithm shown in
Figure 9 [YK92, SS92]. Rays are sent into the dataset from each pixel on a base plane, which is co-planar to

Image Plane

Warp

Base Plane

Volume
Data

Voxel Slice

Figure 9:Template-based ray-casting.

the face of the volume data that is most parallel and nearest to the image plane. Because the image plane is
typically at some angle to the base-plane, the resulting base-plane image is warped onto the image plane.

The main advantage of this algorithm is that voxels can be read and processed in planes of voxels (so
called slices) that are parallel to the base-plane. Within a slice, voxels are read from memory a scanline of
voxels at a time, in top to bottom order. This leads to regular, object-order data access.

VolumePro System Architecture
VolumePro will be implemented as a PCI card for Windows NT computers. The card will contain one

volume rendering ASIC (called thevg500) and 32, 64, or 128 MBytes of volume memory. The warping and

MERL-TR-99-18 April 1999

8

display of the final image will be done on an off-the-shelf 3D graphics card with 2D texture mapping. The
vg500 volume rendering ASIC, shown in Figure 10, will contain four identical rendering pipelines, arranged
side by side, running at 133 MHz each. The vg500 also contains interfaces to voxel memory, pixel memory,
and the PCI bus. Each pipeline communicates with voxel and pixel memory and two neighboring pipelines.

Interpolation

Gradient
Estimation

Shading &
Classification

Compositing

P
ipeline 1

P
ipeline 2

P
ipeline 3

Voxel Memory Interface

Pixel Memory Interface

SDRAM SDRAM SDRAM SDRAM

SDRAM SDRAM SDRAM SDRAM

P
C

I Interface

vg500
ASIC

Slice B
uffers

P
ipeline 0

P
L

L
 &

 G
lue

Figure 10:The vg500 volume rendering ASIC with four identical ray-casting pipelines.

Pipelines on the far left and right are connected to each other in a wrap-around fashion (indicated by grey
arrows in Figure 10). A main characteristic of VolumePro is that each voxel is read from volume memory
exactly once per frame. Voxels and intermediate results are cached in so called slice buffers so that they
become available for calculations precisely when needed.

Each rendering pipeline implements ray-casting and sample values along rays are calculated using tri-
linear interpolation. A 3D gradient is computed using central differences between tri-linear samples. The
gradient is used in the shader stage, which computes the sample intensity according to the Phong illumination
model. Lookup tables in the classification stage assign color and opacity to each sample point. Finally, the
illuminated samples are accumulated into base plane pixels using front-to-back compositing.

Volume memory uses 16-bit wide synchronous DRAMs (SDRAMs) for up to 128 MBytes of volume
storage.2� 2 � 2 cells of neighboring voxels, so called miniblocks, are stored linearly in volume memory.
Miniblocks are read and written in bursts of eight voxels using the fast burst mode of SDRAMs. In addition,
VolumePro uses a linear skewing of miniblocks [KB88]. Skewing guarantees that the rendering pipelines
always have access to four adjacent miniblocks in any of the three slice orientations. A miniblock with
position[xyz] in the volume is assigned to the memory modulek as follows:

k = (b
x

2
c+ b

y

2
c+ b

z

2
c) mod 4: (2)

MERL-TR-99-18 April 1999

9

VolumePro Performance
Each of the four SDRAMs provides burst-mode access at up to 133 MHz, for a sustained memory band-

width of 4 � 133 � 106 = 533 million 16-bit voxels per second. Each rendering pipeline operates at 133
MHz and can accept a new voxel from its SDRAM memory every cycle. Over 500 million tri-linear samples
per second is sufficient to render2563 volumes at 30 frames per second.

6 Summary

Table 1 lists the main characteristics of the volume rendering accelerators that have been presented in this
paper. Figure 11 shows texture rendered images, courtesy of David Heath, Johns Hopkins University. Fig-

Texture Mapping VIRIM VolumePro

Algorithm Planer texture resampling.
Gradients
with multi-pass rendering,
shading in software.

Projection plane
ray-casting. 2D gradients
in hardware, shading using
DSPs.

Template-based
ray-casting. 3D gradients
and Phong illumination in
hardware.

Memory 8-way interleaved. Vol-
ume size limited by texture
memory only

8-way interleaved. 2563

volumes, 16 bits per voxel.
Burst mode and lin-
ear skewing of miniblocks.
2563 volumes, 16 bits per
voxel.

Parallelism Pipelining. Pipelining and 16 parallel
ray-casting DSPs.

Four parallel rendering
pipelines.

Implementation Part of 3D graphics en-
gines, available now.

Large deskside machine,
available now.

PCI card for Windows NT,
available in 1999.

Performance 160M samples/sec 36M samples/sec 533M samples/sec

Table 1: Comparison of architectural features.

ures 12 shows images created on VIRIM at the University of Mannheim, Germany. And Figure 13 shows
images generated by a C++ simulation of the VolumePro system. Color versions of these pictures are avail-
able at http://www.elsevier.nl/locate/future.

Texture hardware offers a natural integration of volume datasets into traditional polygon graphics acceler-
ators. This provides combined rendering of volume data and embedded geometry. The availability of texture
systems is increasing with the advent of 3D graphics in PC systems. However, current texture systems do
not fully address the needs of volume rendering applications. The lack of gradient estimation and directional
shading in hardware prohibits high-quality rendering at real-time frame rates.

VIRIM and VolumePro use high quality ray-casting, and both architectures implement gradient estima-
tion and per-sample illumination in hardware. The image quality of both architectures is very good. The
main disadvantages of VIRIM are its large physical size and the comparatively low frame rates. In contrast,
VolumePro contains a single ASIC, capable of rendering a data set of2563 voxels at 30 frames per second.
VolumePro is targeted to PC class computers running Windows NT and will be available at PC price levels.
However, both VIRIM and VolumePro do not allow arbitrary intermixing of volumes and polygons.

The similarities between texture mapping and volume rendering will ultimately lead to an integration
of these approaches into a unified architecture. The lessons learned from special-purpose volume render-
ing hardware will lead to texture systems that implement all elements of the volume rendering pipeline in
hardware. Alternatively, volume rendering architectures will include support for embedded geometry and
advanced texturing. The architectures surveyed in this paper are a first and important step in this direction.

MERL-TR-99-18 April 1999

10

(a) Aneurysm, 9 frames/sec (b) Thorax, 1 frame/sec

Figure 11:Texture mapped images of medical CT data. a) Aneurysm (256 � 256 � 104), no shading. b)
Human thorax (256 � 256 � 11), central difference gradients and shading. Performance numbers are for
a dual-processor SGI Onyx with 256 MB main memory, Infinite Reality Engine graphics, and two RM-64
texture systems. Images courtesy of David Heath, Johns Hopkins University.

(a) Visible human head, 10 seconds/frame (b) Cut planes and shadows, 10 seconds/frame

Figure 12:Data from the visible human project rendered on VIRIM. a) Head, downsampled to2563 voxels.
b) Same as a), but rendered with three cut-planes and shadows. Images courtesy of University of Mannheim,
Germany, and Volume Graphics GmbH, Heidelberg, Germany.

MERL-TR-99-18 April 1999

11

(a) Lobster (b) MRI head

Figure 13:Images from a bit-accurate C++ software simulation of the VolumePro system. a) CT scan of a
lobster (320� 320� 34). b) UNC MRI head (256� 256� 109).

References

[Ake93] K. Akeley. RealityEngine graphics. InComputer Graphics, Proceedings of SIGGRAPH 93,
pages 109–116, August 1993.

[BK97] I. Bitter and A. Kaufman. A ray-slice-sweep volume rendering engine. InProceedings of the
Siggraph/Eurographics Workshop on Graphics Hardware, pages 121–130, Los Angeles, CA,
August 1997.

[CCF94] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomographic reconstruction
using texture mapping hardware. In1994 Workshop on Volume Visualization, pages 91–98,
Washington, DC, October 1994.

[Fly95] M. J. Flynn. Computer Architecture – Pipelined and Parallel Processor Design. Jones and
Bartlett Publishers, 1995.

[FvDFH90] J. Foley, A. van Dam, S. Feiner, and J. Hughes.Computer Graphics: Principles and Practice.
Addison-Wesley Publishing Company, 2nd edition, 1990.

[Gib97] S. Gibson. Linked volumetric objects for physics-based modeling. Technical Report TR97-20,
MERL – A Mitsubishi Electric Research Lab, November 1997.

[GPR+94] T. Guenther, C. Poliwoda, C. Reinhard, J. Hesser, R. Maenner, H.-P. Meinzer, and H.-J. Baur.
VIRIM: A massively parallel processor for real-time volume visualization in medicine. InPro-
ceedings of the 9th Eurographics Workshop on Graphics Hardware, pages 103–108, Oslo, Nor-
way, September 1994.

[HB86] K. H. Höhne and R. Bernstein. Shading 3D-images from CT using gray-level gradients.IEEE
Transactions on Medical Imaging, MI-5(1):45–47, March 1986.

MERL-TR-99-18 April 1999

12

[HCN94] B. M. Hemminger, T. J. Cullip, and M. J. North. Interactive visualization of 3D medical image
data. Technical report, University of North Carolina at Chapel Hill, Department of Radiology
and Radiation Oncology, 1994. TR 94-027.

[HMK+95] J. Hesser, R. M¨anner, G. Knittel, W. Straßer, H. Pfister, and A. Kaufman. Three architectures
for volume rendering. InProceedings of Eurographics ’95, pages C–111–C–122, Maastricht,
The Netherlands, September 1995. European Computer Graphics Association.

[Kat97] Y. Katayama. Trends in semiconductor memories.IEEE Micro, 7(6):10–17, November 1997.
Special issue on Advanced Memory Technology.

[KB88] A. Kaufman and R. Bakalash. Memory and processing architecture for 3D voxel-based imagery.
IEEE Computer Graphics & Applications, 8(6):10–23, November 1988.

[KS94] G. Knittel and W. Strasser. A compact volume rendering accelerator. InVolume Visualization
Symposium Proceedings, pages 67–74, Washington, DC, October 1994. ACM Press.

[KS97] G. Knittel and W. Strasser. Vizard – visualization accelerator for realtime display. InPro-
ceedings of the Siggraph/Eurographics Workshop on Graphics Hardware, pages 139–146, Los
Angeles, CA, August 1997.

[Lev88] M. Levoy. Display of surfaces from volume data.IEEE Computer Graphics & Applications,
8(5):29–37, May 1988.

[Lev90] M. Levoy. Efficient ray tracing of volume data.ACM Transactions on Graphics, 9(3):245–261,
July 1990.

[LL94] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factorization of the viewing
transform. InComputer Graphics, Proceedings of SIGGRAPH 94, pages 451–457, July 1994.

[MMSE91] H.-P. Meinzer, K. Meetz, D. Scheppelmann, and U. Engelmann. The Heidelberg ray tracing
model. IEEE Computer Graphics & Applications, page 34, November 1991.

[OPL+97] R. Osborne, H. Pfister, H. Lauer, N. McKenzie, S. Gibson, W. Hiatt, and T. Ohkami. EM-
Cube: An architecture for low-cost real-time volume rendering. InProceedings of the Sig-
graph/Eurographics Workshop on Graphics Hardware, pages 131–138, Los Angeles, CA, Au-
gust 1997.

[PAC97] M. Peercy, J. Airey, and B. Cabral. Efficient bump mapping hardware. InComputer Graphics,
Proceedings of SIGGRAPH ’97, pages 303–306, August 1997.

[PD84] T. Porter and T. Duff. Compositing digital images.Computer Graphics, 18(3), July 1984.

[PK96] H. Pfister and A. Kaufman. Cube-4 – A scalable architecture for real-time volume rendering. In
1996 ACM/IEEE Symposium on Volume Visualization, pages 47–54, San Francisco, CA, October
1996.

[Sak97] K. Sakamura. Advanced DRAM technology.IEEE Micro, 7(6):8–9, November 1997. Special
issue on Advanced Memory Technology.

[SS92] P. Schr¨oder and G. Stoll. Data parallel volume rendering as line drawing. In1992 Workshop on
Volume Visualization, pages 25–31, Boston, MA, October 1992.

[Wes91] L. A. Westover.Splatting: A Parallel, Feed-Forward Volume Rendering Algorithm. PhD thesis,
The University of North Carolina at Chapel Hill, Department of Computer Science, July 1991.
Technical Report, TR91-029.

MERL-TR-99-18 April 1999

13

[YK92] R. Yagel and A. Kaufman. Template-based volume viewing.Computer Graphics Forum, Pro-
ceedings Eurographics, 11(3):153–167, September 1992.

MERL-TR-99-18 April 1999

	Title Page
	Title Page
	page 2

	Architectures for Real-Time Volume Rendering
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15

