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Motivation

* End-to-end automatic speech recognition (ASR) has greatly simplified the pipeline for
buidling and applying ASR systems.

* Offline end-to-end ASR systems have shown to surpass the performance of traditional
hybrid DNN-HMM solutions.

* Streaming end-to-end architectures are still lacking behind this success.

 Encoder-decoder based architectures have demonstrated to achieve the best end-to-end
ASR results but are difficult to apply in a streaming fashion.

This work

* Our proposed triggered attention (TA) concept is used to overcome these difficulties.

* The TA concept is applied to the transformer architecture, achieving SOTA streaming end-
to-end ASR results.
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Outline

* Encoder-Decoder Neural Networks
— Attention
— Transformer
— Self-attention
— Time-Restricted Self-Attention
— Streaming Encoder-Decoder Attention (prior work)

* Triggered Attention
— Architecture
— Frame-Synchronous Decoding Algorithm

* LibriSpeech Results
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Adaptive Chunking based on Selection Probability
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Decoder
- Monotonic Chunkwise Attention (MoChA) [1]

Eneray . / Problems:
Function $ _J | J threshold - Backpropagation with discrete decisions is not
-~ 4 possible.

- No frame-synchronous decoding algorithm.

- Detecting word or word-piece positions is a good
part of the ASR job that defines insertion and
deletion errors.
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[1] C. Chiu and C. Raffel, “Monotonic chunkwise attention,” in Proc. ICLR, Apr. 2018.
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Acoustic features: X= (x4, ..., X1) — gg

N. Moritz, T. Hori, and J. Le Roux, “Triggered attention for end-to-end speech recognition,” in Proc. ICASSP, May 2019, pp. 5666-5670.
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Frame-synchronous CTC prefix beam search [1]:
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£, = (<sos>, Hey, Word, World) fg = (<sos>, Hello, World)

Set of prefix sequences after pruning: OHRLA LR )
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Encoderoutput Xp: GG HfH QA B0 0 d 041

[1] A. L. Maas, A. Y. Hannun, D. Jurafsky, and A. Y. Ng, “Firstpass large vocabulary continuous speech recognition using bidirectional recurrent DNNs,” arXiv preprint arXiv:1408.2873, 2014.
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Frame-synchronous one-pass TA decoding [1]:

10g Pjoint (1XLin) = Alog Dprix (£1X1n) + (1 — D) log pea (£1X1) + alogpm(€) + BI|

Dra: Triggered attention probability
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[1] N. Moritz, T. Hori, and J. Le Roux, “Streaming end-to-end speech recognition with joint CTC-attention based models,” in Proc. ASRU, Dec. 2019, pp. 936-943.
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Time-restricted

Full-sequence

Encoder CTC-attention decoding [1,2]
Clean Other

Dev Test Dev Test

Full-sequence 2.4 2.7 6.0 6.1

Frame-synchronous

TA: g€ = 18,

encoder CTC prefix beam search delay: £€9¢¢ . 40 ms = 720 ms
Clean Other Clean
g®N¢ / delay* Dev Test Dev Test Dev Test Dev Test
0 /30ms 3.3 3.7 9.4 9.4 2.9 3.2 8.1 8.0
1 /510ms 3.0 3.3 8.4 8.6 2.8 3.0 7.5 7.8
2 /990 ms 2.9 3.1 8.0 8.2 2.7 2.9 7.3 7.4
3 /1470 ms 2.8 2.9 7.8 8.1 2.7 2.8 7.1 7.2
Full-sequence 2.5 2.8 6.9 7.0 2.4 2.6 6.1 6.3

* Algorithmic encoder delay: E - £°"¢ - frame—rate + CNN—delay
E =12, frame-rate = 40 ms, CNN-delay = 30 ms

1.23 seconds

[1] S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, “Hybrid CTC/attention architecture for end-to-end speech recognition,” J. Sel. Topics Signal Processing, vol. 11, no. 8, pp. 1240-1253, 2017.

[2] S. Karita, N. Yalta, S. Watanabe, M. Delcroix, A. Ogawa, and T. Nakatani, “Improving transformer-based end-to-end speech recognition with connectionist temporal classification and language model
integration,” in Proc. ISCA Interspeech, Sep. 2019, pp. 1408-1412.
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* The triggered attention (TA) concept enables frame-synchronous decoding with an
encoder-decoder based model for the first time.

* The TA concept enables joint scoring of an CTC and attention-based decoder model in a
streaming fashion.

* The proposed system achieves state-of-the-art results for streaming end-to-end ASR on
the LibriSpeech corpus.
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