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Knowledge Distillation (KD)

Experimental results on image recognition datasets

Relaxations of OT for KDUsing optimal transport (OT) for feature matching

Conclusion

• KD is one of the main ways to achieve model compression, by transferring 
knowledge from a larger, more accurate teacher to a smaller student network. 

• In order to train the student, the earliest methods used a combination of the 
usual cross-entropy loss with the K-L divergence b/w student and teacher outputs

• Student performance can be further improved using supervision at the 
intermediate layers by adding additional loss terms that encourage matching the 
teacher and student features. E.g., Fitnets and Relational KD

• Optimal transport matches student 
and teacher feature distributions in 
a principled way

• Unlike methods like FitNets, it 
relaxes the unnecessary 
requirement that teacher and 
student features need to match 
one-to-one

• It is a stronger condition than in 
Relational KD which only matches 
distance matrices computed in the 
teacher and student feature spaces

• We use relaxations of OT in order to 
solve the OT problems at multiple 
layers efficiently

• We experiment with
• Relaxed  Earth Mover’s Distance 

(REMD)
• Inexact Proximal Optimal Transport 

(IPOT)
• Both can be easily integrated with 

modern deep learning toolboxes

CIFAR-100
Numbers shown are accuracies (higher is better)

ImageNet • We have presented feature matching methods using
optimal transport between teacher and student features
at intermediate layers

• We have shown improved performance in knowledge
distillation using optimal transport compared to methods
like FitNets and RKD
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• Accurate deep neural 
networks for vision are usually 
very large and cannot be 
easily deployed in resource-
constrained settings

• Model compression is an 
important research direction 
to make networks smaller 
without losing accuracy
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