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Knowledge Distillation (KD)

Using optimal transport (OT) for feature matching

Relaxations of OT for KD
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* Accurate deep neural
networks for vision are usually
very large and cannot be
easily deployed in resource-
constrained settings
Model compression is an
important research direction
Cross- to make networks smaller
without losing accuracy

KD is one of the main ways to achieve model compression, by transferring

<nowledge from a larger, more accurate teacher to a smaller student network.
* In order to train the student, the earliest methods used a combination of the
usual cross-entropy loss with the K-L divergence b/w student and teacher outputs

e Student performance can be further improved using supervision at the

intermediate layers by adding additional loss terms that encourage matching the

teacher and student features. E.g., Fitnets and Relational KD
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Optimal transport matches student
and teacher feature distributions in

a principled way | + ‘y
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e We use relaxations of OT in order to
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* |nexact Proximal Optimal Transport
(IPOT) The final relaxed EMD (REMD) is computed using

* Both can be easily integrated with

modern deep learning toolboxes Lrevp(XW, y®)
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Experimental results on image recognition datasets

Conclusion

* We have presented feature matching methods using
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