

Hardware-Efficient Quantization for Green Custom Foundation Models

Toshiaki Koike-Akino^(1,2), Chang Meng⁽²⁾, Volkan Cevher⁽²⁾, Giovanni De Micheli⁽²⁾ ⁽¹⁾Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA 02139, USA ⁽²⁾École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Introduction

- We show the energy efficiency of floating-point (FP) multipliers over integer multipliers when synthesized on custom hardware chips.
- We propose **hardware-efficient quantization (HEQ)**, enabling hardware profiles differentiable to optimize the weight quantization for power reduction.
- Our HEQ framework achieves **25%** power reduction, and our custom multipliers provide up to **20-fold** power reduction altogether.

Floating-Point vs. Integer Multiplier

- FP multipliers are more energy efficient than integer multipliers.
- bfloat16 is **2-fold** efficient than int16 multipliers (fewer bits in mantissa).

HEQ

• HEQ optimizes weight quantization distribution to jointly minimize cross entropy and power consumption for custom multipliers.

Figure 1: General FP multiplier diagram: exponent adder; mantissa multiplier; normalization. Hardware complexity is dominated by $(N_{\rm m} + 1)$ -bit integer multiplier block.

Table 1: Power/delay/area profiles of general multipliers designed through Yosys[2]/ABC[3] logic synthesis and Synopsys Design Compiler[4] on 45nm CMOS technology standard cell library[1]. Power consumption is at 0.2GHz clock frequency.

Multipliers	int32	$float32_{e8m23}$	int16	$float16_{e5m10}$	$bfloat16_{e8m7}$	int8	$float8_{e5m2}$	$float8_{e4m3}$	int4	$float4_{e3m0b6}$
Power (μ W)	5,883.5	4,886.3	1,054.6	814.6	435.6	170.5	63.3	101.3	15.6	8.4
Delay (ns)	4.99	5.00	2.67	3.76	3.25	1.58	1.25	1.65	0.45	0.29
Area $(\mu { m m}^2)$	5,412.8	4,063.9	1,157.6	828.9	508.6	231.2	95.2	144.7	29.5	16.0

Green Custom Foundation Models

- We design full-custom AI chip with constant quantized weights.
- Constant multipliers are lower power than general multipliers (5–20 folds).
- Power consumption depends on weight distributions.

Figure 5: Interpolated STE[5] for differentiable hardware profile, enabling quantization-aware training (QAT). Regularized loss to minimize cross entropy and power consumption.

Experiments & Results

- HEQ regularization improves **both** performance and energy efficiency.
- FP3 HEQ achieves $7 imes 10^4$ greener than FP32 within 1% loss.

Figure 6: Power-aware quantization results across regularization factor λ . Error band shows a confidence interval under one standard deviation over 7 random seeds.

Figure 7: Quantized weight histogram for custom FP8 multiplier e4m3, across regularization λ .

Table 2: Comparison of quantization methods for implementing custom ViT model[6].

	PTQ on General Multiplier									
Precision	FP32 _{e8m23}	FP16 _{e5m10}	BF16 _{e8m7}	FP8 _{e5m2}	FP8 _{e4m3}	FP6 _{e3m2b7}	FP5 _{e3m1b7}	FP4 _{e3m0b6}	INT4 _{e0m3b4}	FP3 _{e2m0b5}
Accuracy (%)) 98.29 _{±0.11}	$98.03_{\pm0.21}$	98.04 _{±0.22}	$98.01_{\pm 0.25}$	$97.81_{\pm 0.25}$	$97.83_{\pm0.00}$	97.45 _{±0.00}	92.49 _{±0.90}	$10.69_{\pm1.25}$	$14.25_{\pm 2.06}$
Power (μ W)	4,886.3	814.6	435.6	63.3	101.3	46.62	24.04	8.4	15.6	1.2
	HEQ on Custom Multiplier									
Precision	FP32 _{e8m23}	$FP16_{e5m10}$	BF16 _{e8m7}	FP8 _{e5m2}	FP8 _{e4m3}	FP6 _{e3m2b7}	FP5 _{e3m1b7}	FP4 _{e3m0b6}	INT4 _{e0m3b4}	FP3 _{e2m0b}
Accuracy (%)	—	$98.70_{\pm0.09}$	—	$98.65_{\pm0.05}$	$98.60_{\pm 0.11}$	98.78 $_{\pm 0.05}$	$98.67_{\pm 0.09}$	$97.99_{\pm0.08}$	$55.91_{\pm6.74}$	$97.35_{\pm0.1}$
Power (μW)	—	$179.09_{\pm 0.82}$		$6.87_{\pm0.06}$	$6.25_{\pm0.02}$	$2.35_{\pm0.00}$	$1.19_{\pm0.01}$	$0.60_{\pm 0.00}$	$0.13_{\pm 0.00}$	$0.07_{\pm 0.00}$
99			•		9	8.8	1 10 ⁻⁷ 1	otal Energy 0 ⁻⁶ 10 ⁻⁵	(J) 10 ⁻⁴	10 ⁻³

Figure 2: Design of green custom foundation models.

General Multiplier Decomposed Const Multipliers Custom Const Multiplier

Figure 3: Shannon decomposition of general multiplier towards custom constant-weight multiplier.

Figure 4: Power profile across quantized weight value for custom FP8 e4m3 multipliers. Average power is 13.3μ W, average delay is 0.48ns, and average area is 28.7μ m². **8-fold** power efficient than general FP8 multipliers.

References

- [1] Nangate. "The Nangate 45nm Open Cell Library," https://si2.org/open-cell-library/, 2011.
- [2] C. Wolf, et al., "Yosys A free Verilog synthesis suite," Austrochip, vol. 97, 2013.
- [3] R. Brayton and A. Mishchenko, "ABC: An academic industrial-strength verification tool," CAV 2010, pp. 24–40. Springer, 2010.
- [4] Synopsys, "Design Compiler," https://www.synopsys.com/, 2024.
- [5] A. Gholami, et al., "A survey of quantization methods for efficient neural network inference," In Low-Power Computer Vision, pp. 291–326. Chapman and Hall/CRC, 2022.
- [6] A. Dosovitskiy, et al., "An image is worth 16x16 words: Transformers for image recognition at scale," ICLR, 2020.

ICML Workshop ES-FoMo-II 2024: koike@merl.com; {chang.meng, volkan.cevher, giovanni.demicheli}@epfl.ch