

MITSUBISHI ELECTRIC **RESEARCH LABORATORIES**

Equivariant Spatio–Temporal Self–Supervision for LiDAR Object Detection

3.

Deepti Hegde¹*, Suhas Lohit², Kuan-Chuan Peng², Michael J. Jones², Vishal M. Patel¹

¹Johns Hopkins University, ²Mitsubishi Electric Research Laboratories * Work done while an intern at MERL

Results

We use the KITTI-360 and Waymo datasets for pre-training and demonstrate good performance on the downstream task of **3D** object detection with VoxelRCNN.

	Method	average precision (AP) $(\%)$									
Split		Car			Pedestrian			Cyclist			mAP (%)
_		easy	moderate	hard	easy	moderate	hard	easy	moderate	hard	
5%	No pre-training	88.89	79.21	75.55	57.50	49.84	44.27	78.92	59.73	55.97	65.54
	PointContrast	89.94	79.21	76.12	56.13	48.13	43.01	77.98	58.92	55.20	64.96
	STRL	89.30	78.92	75.94	55.68	48.13	42.73	73.98	56.85	53.26	63.87
	ALSO	<u>89.74</u>	79.37	75.91	56.33	49.79	44.77	<u>82.84</u>	<u>64.09</u>	<u>60.16</u>	67.00
	E-SSL ^{3D}	88.79	78.93	75.41	56.02	48.55	43.19	82.85	64.40	60.53	<u>66.52</u>
20%	No pre-training	91.99	82.10	79.40	56.09	49.29	44.26	85.24	67.55	63.13	68.78
	PointContrast	92.23	82.25	79.57	57.33	50.74	45.43	84.16	66.74	62.28	68.97
	STRL	91.97	82.07	79.41	57.40	50.85	45.38	<u>86.36</u>	68.64	64.23	69.59
	ALSO	92.46	82.44	79.77	60.57	53.21	48.61	86.22	69.88	65.40	<u>70.95</u>
	E-SSL ^{3D}	92.67	82.42	79.89	60.72	53.94	49.19	88.04	71.40	66.36	71.63
100%	No pre-training	92.45	83.00	<u>80.20</u>	62.41	55.89	50.31	88.40	68.81	64.42	71.77
	PointContrast	91.73	82.41	79.89	59.82	54.14	48.54	87.28	69.15	63.54	70.72
	STRL	92.27	82.54	79.99	$\underline{61.38}$	54.01	48.31	86.95	67.64	63.31	70.71
	ALSO	92.57	82.88	80.24	60.10	52.12	46.76	<u>90.71</u>	73.94	69.21	72.06
	E-SSL ^{3D}	92.08	82.73	80.18	61.00	53.82	$\underline{48.58}$	91.15	<u>72.68</u>	69.32	72.41

3D object detection with VoxeIRCNN pre-trained on KITTI-360 and fine-tuned on KITTI under different data splits. Each result is an average over 3 fixed subsets of the dataset. We report 3D average precision for 3 categories as well as the mean average precision over 40 recall positions. The best and second-best performance is marked in **bold** and underline, respectively.

Ablation study

a	Temporal nce equivariace	average precision (AP) $(\%)$									
Spatial quivariance		Car			Pedestrian			Cyclist			mAP(%)
-		easy	$\mathbf{moderate}$	hard	easy	$\mathbf{moderate}$	hard	easy	$\mathbf{moderate}$	hard	
×	×	88.68	78.85	74.36	56.30	49.13	43.33	76.48	58.62	54.79	64.50
×	\checkmark	88.98	77.80	73.81	56.53	49.73	44.61	81.50	61.74	57.67	65.82
\checkmark	X	87.12	77.34	74.63	58.66	50.34	45.19	81.09	61.71	58.00	66.01
\checkmark	\checkmark	88.79	78.93	75.41	56.02	48.55	43.19	82.85	64.40	60.53	66.52

The ablation study of the spatial and temporal equivariance evaluated on the task of object detection with VoxelRCNN. The reported numbers are 3D mean average precision (%) for the "Car", "Pedestrian", and Cyclist" categories for the 3 difficulty levels and 40 recall positions.

[1] Xie, Saining, et al. "PointContrast: Unsupervised pre-training for 3d point cloud understanding." ECCV 2020 [2] Boulch, Alexandre, et al. "ALSO: Automotive lidar self-supervision by occupancy estimation." CVPR 2023. **3** Huang, Siyuan, et al. "Spatio-temporal self-supervised representation learning for 3d point clouds." ICCV 2021. [4] Jin, Zhao, et al. "Deformation and correspondence aware unsupervised synthetic-to-real scene flow estimation for point clouds.' CVPR 2022.

References