Evaluating Large Vision and Language Models on Children's Mathematical Olympiads

Anoop Cherian, Kuan-Chuan Peng, Suhas Lohit, Joanna Matthiesen, Kevin Smith, and Joshua B. Tenenbaum https://smartdataset.github.io/smart840

1. Al vs Human Cognition: Key Questions

Recent years have seen a significant progress in the general-purpose problem-solving abilities of large vision and language models (LVLMs), such as ChatGPT, Gemini, etc.; some of these breakthroughs even seem to enable AI models to outperform human abilities in varied tasks that demand higher-order cognitive skills.

- 1. Are the current large AI models indeed capable of generalized problem solving as humans do?
- Can they perform well on tasks that <u>need broad skills</u>? 2.
- Humans learn over the years through cumulative knowledge gathering. 3. Do AI models demonstrate such accumulation of knowledge?
- Do AI models and humans have similar core competencies? 4.
- How <u>correlated</u> are their reasoning and problem-solving abilities? 5.

2. Approach

Compare human and AI on tasks that allow direct one-to-one comparison.

Our idea: To **analyze** LVLMs capabilities in mathematical and algorithmic reasoning using problems from Mathematical Olympiads with high human participation and compare their performances **directly** to that of human performance on the corresponding problems.

3. Math Kangaroo Olympiad & SMART-840 Dataset

- > We consider problems from the **Math Kangaroo (MK) Olympiad**
 - ✤ A popular international math competition targeted at <u>children from</u> <u>grades 1-12</u>
 - Each exam tests children's <u>deeper mathematical abilities</u> using multiple choice vision-and-language puzzles that are appropriately gauged to their age and skills.
- \succ Using the puzzles from MK, we created a dataset: **SMART-840**,
 - Our dataset consists of 840 problems from years 2020-2024 for grades 1-12
 - MK also has recorded children's performances for each of these exams.

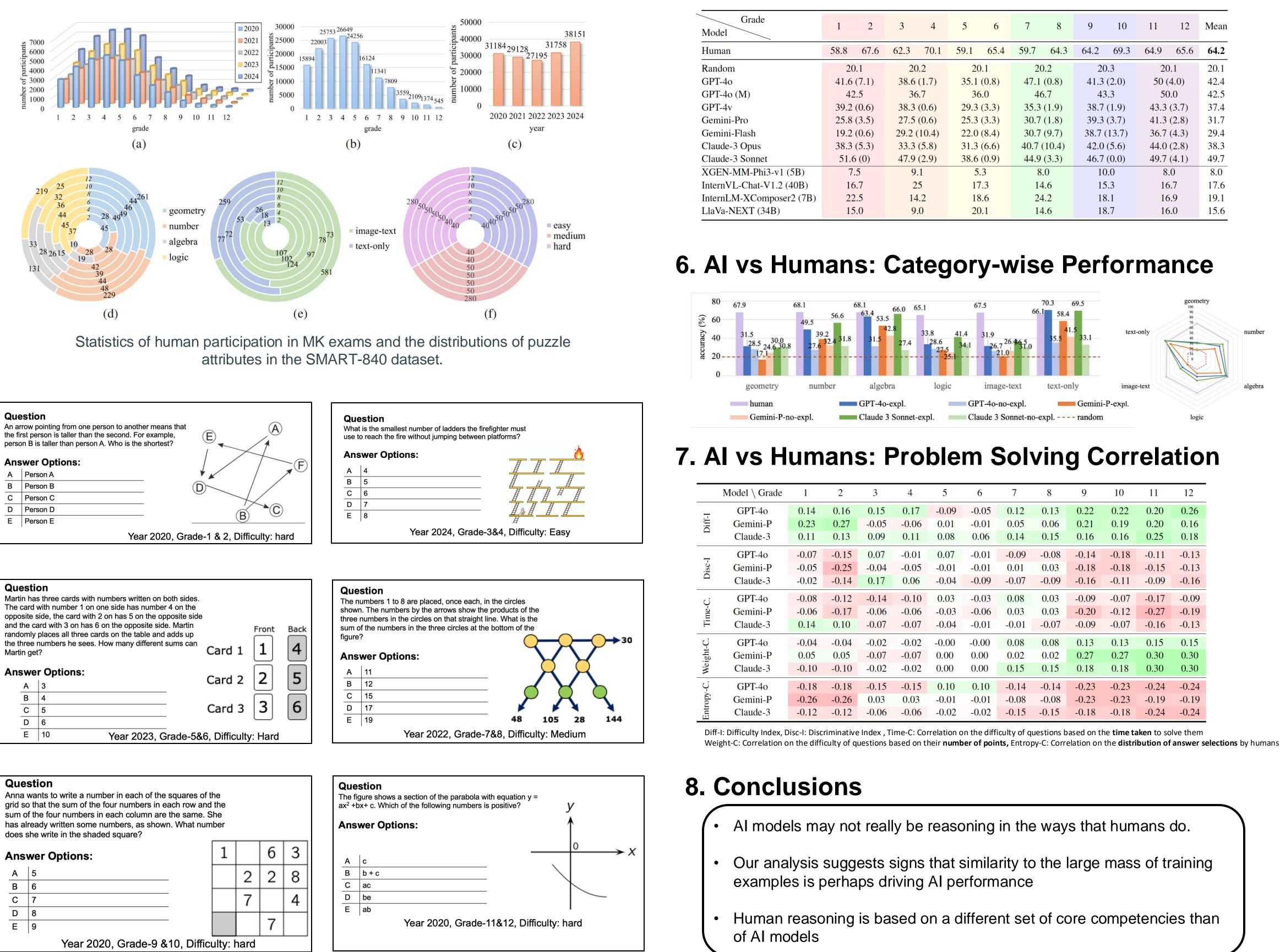
ts	7000	
Dan	6000	
icij	5000	
art	4000	
off	3000	
er	2000	
dmb	1000	
nu	0	

Question An arrow pointi the first person person B is tall								
Ans	wer Op							
А	Person A							
В	Person E							
С	Person C							
D	Person D							
Е	Person E							

Question

Martin get?

Answer O									
	Α	3							
	В	4							
	С	5							
	D	6							
	Е	10							


Question

Answer Options: Δ 5

А	5
В	6
С	7
D	8
Е	9
	•

Changes for the Better MITSUBISHI ELECTRIC RESEARCH LABORATORIES,

4. SMART-840 Dataset: Statistics & Examples

Massachusetts Institute of Technology

NEURAL INFORMATION

PROCESSING SYSTEMS

5. Al vs Humans: Grade-level Performance

Grade Aodel	1	2	3	4	5	6	7	8	9	10	11	12	Mean
Iuman	58.8	67.6	62.3	70.1	59.1	65.4	59.7	64.3	64.2	69.3	64.9	65.6	64.2
andom	20).1	20).2	20).1	20).2	20	.3	20	.1	20.1
GPT-40	41.6	(7.1)	38.6	(1.7)	35.1	(0.8)	47.1	(0.8)	41.3	(2.0)	50 (4.0)	42.4
GPT-40 (M)	42	2.5	36	5.7	36	5.0	46	5.7	43	.3	50	.0	42.5
SPT-4v	39.2	(0.6)	38.3	(0.6)	29.3	(3.3)	35.3	(1.9)	38.7	(1.9)	43.3	(3.7)	37.4
Gemini-Pro	25.8	(3.5)	27.5	(0.6)	25.3	(3.3)	30.7	(1.8)	39.3	(3.7)	41.3	(2.8)	31.7
Gemini-Flash	19.2	(0.6)	29.2 ((10.4)	22.0	(8.4)	30.7	(9.7)	38.7 ((13.7)	36.7	(4.3)	29.4
Claude-3 Opus	38.3	(5.3)	33.3	(5.8)	31.3	(6.6)	40.7 ((10.4)	42.0	(5.6)	44.0	(2.8)	38.3
Claude-3 Sonnet	51.6	5 (O)	47.9	(2.9)	38.6	(0.9)	44.9	(3.3)	46.7	(0.0)	49.7	(4.1)	49.7
KGEN-MM-Phi3-v1 (5B)	7.	.5	9	.1	5.	.3	8.	.0	10	0.0	8.	0	8.0
nternVL-Chat-V1.2 (40B)	16	5.7	2	5	17	.3	14	.6	15	.3	16	.7	17.6
nternLM-XComposer2 (7B)	22	2.5	14	.2	18	8.6	24	.2	18	.1	16	.9	19.1
laVa-NEXT (34B)	15	5.0	9	.0	20).1	14	.6	18	.7	16	.0	15.6

	$Model \setminus Grade$	1	2	3	4	5	6	7	8	9	10	11	12
	GPT-40	0.14	0.16	0.15	0.17	-0.09	-0.05	0.12	0.13	0.22	0.22	0.20	0.26
	Gemini-P	0.23	0.27	-0.05	-0.06	0.01	-0.01	0.05	0.06	0.21	0.19	0.20	0.16
1	Claude-3	0.11	0.13	0.09	0.11	0.08	0.06	0.14	0.15	0.16	0.16	0.25	0.18
•	GPT-40	-0.07	-0.15	0.07	-0.01	0.07	-0.01	-0.09	-0.08	-0.14	-0.18	-0.11	-0.13
	Gemini-P	-0.05	-0.25	-0.04	-0.05	-0.01	-0.01	0.01	0.03	-0.18	-0.18	-0.15	-0.13
1	Claude-3	-0.02	-0.14	0.17	0.06	-0.04	-0.09	-0.07	-0.09	-0.16	-0.11	-0.09	-0.16
;	GPT-40	-0.08	-0.12	-0.14	-0.10	0.03	-0.03	0.08	0.03	-0.09	-0.07	-0.17	-0.09
	Gemini-P	-0.06	-0.17	-0.06	-0.06	-0.03	-0.06	0.03	0.03	-0.20	-0.12	-0.27	-0.19
	Claude-3	0.14	0.10	-0.07	-0.07	-0.04	-0.01	-0.01	-0.07	-0.09	-0.07	-0.16	-0.13
	GPT-40	-0.04	-0.04	-0.02	-0.02	-0.00	-0.00	0.08	0.08	0.13	0.13	0.15	0.15
)	Gemini-P	0.05	0.05	-0.07	-0.07	0.00	0.00	0.02	0.02	0.27	0.27	0.30	0.30
	Claude-3	-0.10	-0.10	-0.02	-0.02	0.00	0.00	0.15	0.15	0.18	0.18	0.30	0.30
	GPT-40	-0.18	-0.18	-0.15	-0.15	0.10	0.10	-0.14	-0.14	-0.23	-0.23	-0.24	-0.24
	Gemini-P	-0.26	-0.26	0.03	0.03	-0.01	-0.01	-0.08	-0.08	-0.23	-0.23	-0.19	-0.19
	Claude-3	-0.12	-0.12	-0.06	-0.06	-0.02	-0.02	-0.15	-0.15	-0.18	-0.18	-0.24	-0.24