Smoothed Embeddings for Robust Language Models

Ryo Hase¹, Md Rafi Ur Rashid², Ashley Lewis³, Jing Liu⁴, Toshiaki Koike-Akino⁴, Kieran Parsons⁴, Ye Wang⁴

¹ Mitsubishi Electric Corporation, Information Technology R&D Center, Kamakura, Japan ² Pennsylvania State University, University Park, PA, U.S.A. ³ The Ohio State University, Columbus, OH, U.S.A. ⁴ Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, U.S.A.

Summary

- We propose a defense against jailbreaking attacks by adding noise to embedding vectors to preserve semantic information
- We introduce a token-level aggregation scheme integrated with auto-regressive generation
- We investigate how directional embedding noise impacts semantic information preservation

Proposed Defense

• Randomized Embedding Smoothing and Token Aggregation (**RESTA**): Autoregressive generation is performed in

Experimental Results

- We used jailbreaking attack prompts available in the JailbreakBench dataset [1] to evaluate our defense against SmoothLLM [2] as a baseline
- RESTA provided favorable trade-offs in reducing Attack
 Success Rate (ASR) with less impact on model utility
- Trade-off curves with four perturbation types show that noise directionality impacts performance

Table 1: Summary of defense performance.

Model/		ASR	Alpaca	IFEval
Attack	Defense	$(\% \downarrow)$	$(\% \uparrow)$	(% 个)

parallel, and the next token is selected by majority voting

 Prefix smoothing: RESTA is applied only to the prefix (first l response tokens) to reduce compute costs

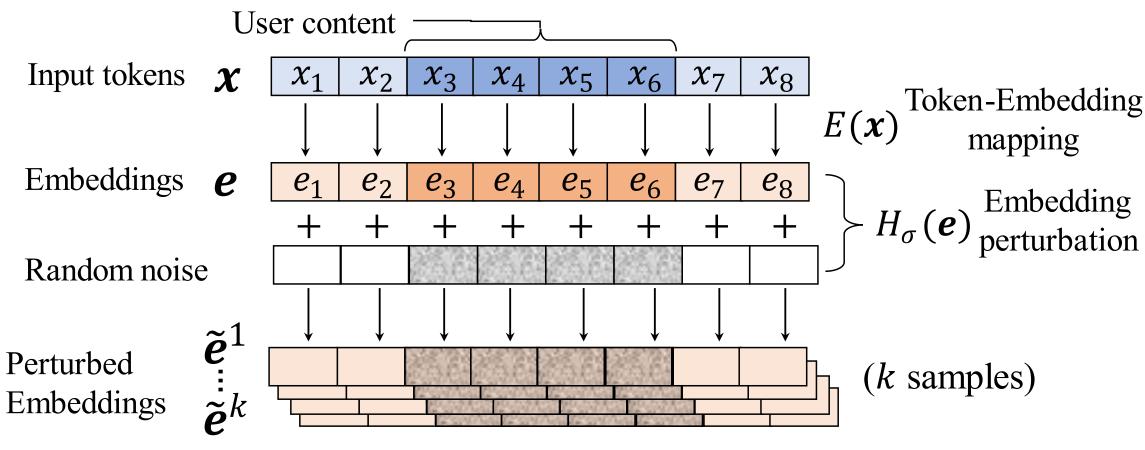
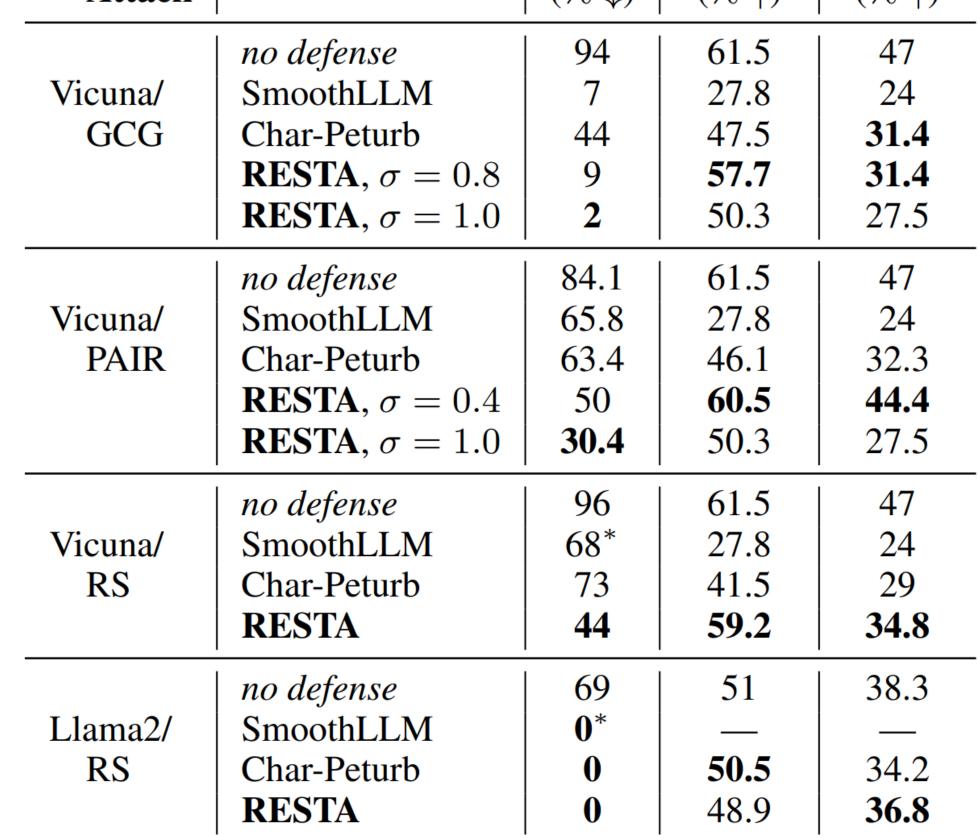
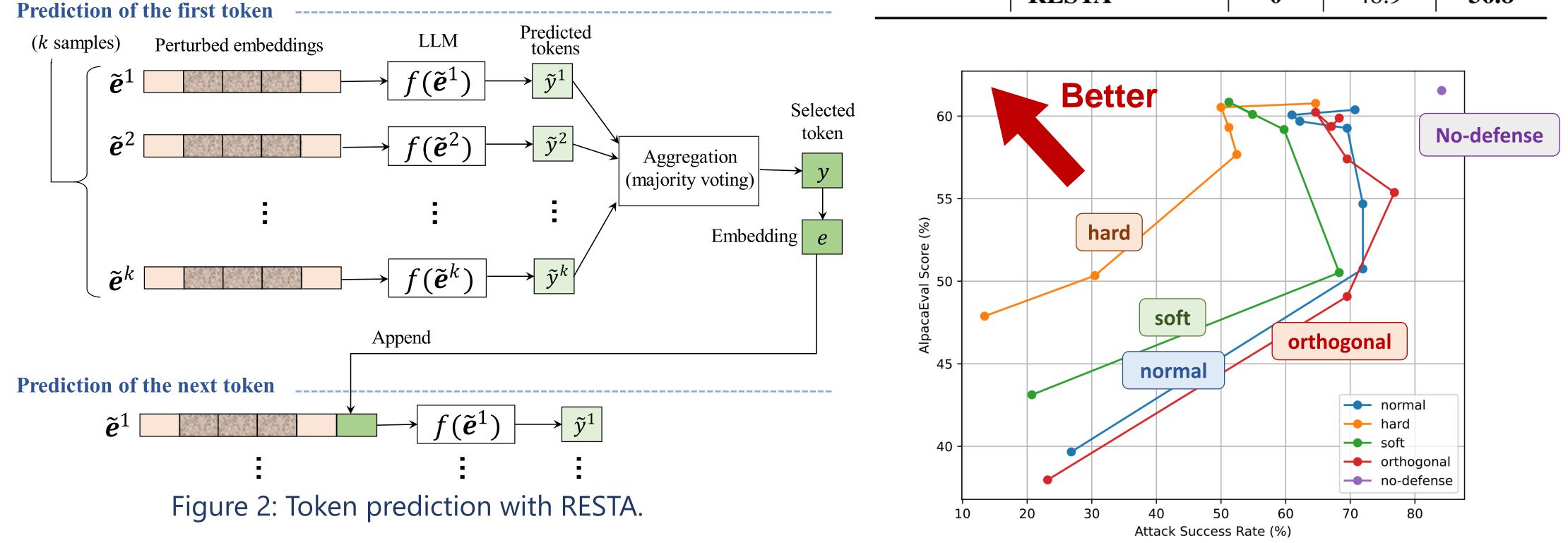


Figure 1: Perturbed embeddings for LLM inputs.





Embedding Perturbation Types

Isotropic Gaussian noise: Simple perturbation baseline $h_{\sigma}^{\text{iso}}(e) \coloneqq e + z \quad (z \sim \mathcal{N}(0, \sigma^2 I))$

Hard directional noise: Noise in direction of embedding vector $h_{\sigma}^{\text{dir}}(e) \coloneqq e + z_1 \cdot \text{dir}(e) \quad (z_1 \sim \mathcal{N}(0, \sigma^2), \text{dir}(e) \coloneqq e/||e||_2)$

Soft directional noise: Variation of directional noise

 $h_{\sigma}^{\text{soft}}(e) \coloneqq e + z \odot \operatorname{dir}(e)$ (\odot : Element-wise product)

Orthogonal noise: Ablation study for directional noise $h_{\sigma}^{\text{orth}}(e) \coloneqq e + (I - \operatorname{dir}(e) \operatorname{dir}(e)^{\mathsf{T}}) z$ Figure 3: RESTA Performance Trade-off: Robustness (ASR of PAIR [3]) vs Utility (AlpacaEval) for Vicuna-13B.

References

- 1. P. Chao *et al.*, "JailbreakBench: An open robustness benchmark for jailbreaking large language models." arXiv preprint arXiv:2404.01318, 2024.
- 2. A. Robey *et al.*, "SmoothLLM: Defending large language models against jailbreaking attacks," arXiv preprint arXiv:2310.03684,2023.
- 3. P. Chao *et al.*, "Jailbreaking Black Box Large Language Models in Twenty Queries," arXiv preprint arXiv:2310.08419,2023.

