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Introduction & Motivation
Classic (3D) Anomaly Detection [1-3] methods focus on the setting that the
testing data (normal + abnormal) are from the same class and the same domain
as training data. However, in real-world industrial 3D Anomaly Detection and
Localization applications,

• the normal training data of the target objects can be unavailable (e.g.,
data privacy, export control regulations, etc.).

• the client’s data can be sensitive, and the client only wants a solution
that can perform well “off-the-shelf.”
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Problem Overview
We propose a new 3D anomaly detection setting: zero-shot 3D anomaly detec-
tion, which refrain practioners from training models for each class separately.

• During training, anomaly-free data from one class are used.

• During testing, the model is required to detect and localize anomalies
from other classes.

Pseudo Anomaly Generation

Overview of our proposed patch-level 3D pseudo anomaly sample generation
process for both“adding”and“removing” type anomalies.

Training Objectives

contrastive learning loss:

representation disentan-
glement loss:

final loss for 3D feature
extractor:

binary cross entropy loss
for the normalcy classifier:

Anomaly Scores
distance-based score:

adversarial perturbation:

classification-based score:

final score:

Quantitative Results
3DzAL outperforms the state-of-the-art methods on the MVTec 3D-AD dataset
for the zero-shot 3D anomaly detection and localization tasks.

Combining both the adding-point and removing-point type in pseudo anomaly
generation achieves the best performance. For each cell, the numbers correspond
to the cases when the training class is bagel/potato/rope.

The ablation on CNN weight initialization (WI) type shows that random-
initialized CNN for inductive-bias-based pseudo anomaly generation leads to the
best performance. For each cell, the numbers correspond to the cases when the
training class is bagel/peach/rope.

3DzAL also works for training data with multiple classes. For each cell, the
first/second number is pixel-level AUPRO (%)/image-level AUROC(%).

Our Proposed Method – 3DzAL
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3DzAL mainly adopts 3 branches to extract features given both RGB and 3D
point cloud (xyz) data of an object:

• The RGB branch extracts feature from 2D image data of the object using
ResNet pre-trained on ImageNet.

• The FPFH branch extracts handcrafted FPFH features from xyz data.

• The point cloud branch employs a learnable network (PointNet++) to
extract features. The network is trained by a patch-level contrastive
learning loss, which takes inductive bias-based pseudo anomaly patches
as negative samples and normal patches as positive samples and a repre-
sentation disentanglement loss which pushes the FPFH features and the
learned 3D features away.

The features of the three branches are concatenated to store in the memory
bank where a coreset selection is performed. In addition, a normalcy classifier
is trained to classify the pseudo anomaly patch and the normal patch using the
binary cross-entropy loss.

Inductive Bias of Random Networks

We feed the xyz data of abnormal examples as the input of a randomly initialized
and untrained ResNet-50, and visualize the attention maps. These maps show
that the random network has the inductive bias of covering the locations of
interest, including the locations shown in the ground truth.


