TR2024-154
Photonics × Machine Learning
-
- "Photonics × Machine Learning", FIOLS, DOI: 10.1364/LS.2024.FW7B.1, September 2024.BibTeX TR2024-154 PDF
- @inproceedings{Kojima2024sep,
- author = {Kojima, Keisuke and Koike-Akino, Toshiaki},
- title = {{Photonics × Machine Learning}},
- booktitle = {FIOLS},
- year = 2024,
- month = sep,
- publisher = {Optica},
- doi = {10.1364/LS.2024.FW7B.1},
- isbn = {978-1-957171-95-1},
- url = {https://www.merl.com/publications/TR2024-154}
- }
,
- "Photonics × Machine Learning", FIOLS, DOI: 10.1364/LS.2024.FW7B.1, September 2024.
-
MERL Contact:
-
Research Areas:
Abstract:
We will present the recent progress of generative AI for the design of photonic devices, including variable autoencoders and diffusion models, and latent space optimization. We also review our non-traditional way of implementing optical neural networks using data re-uploading technique originally proposed for quantum computing