Machine Learning
Data-driven approaches to design intelligent algorithms.
MERL has a long history of research activity in machine learning, including the development of various boosting algorithms and contributing to the theory and practice of highly scalable collaborative filtering. Our recent work has focused on deep learning and reinforcement learning, with application to a wide range of applications including automotive, robotics, factory automation, transportation, as well as building and home systems.
Quick Links
-
Researchers
Toshiaki
Koike-Akino
Ye
Wang
Jonathan
Le Roux
Ankush
Chakrabarty
Anoop
Cherian
Gordon
Wichern
Tim K.
Marks
Philip V.
Orlik
Stefano
Di Cairano
Michael J.
Jones
Kieran
Parsons
Christopher R.
Laughman
Daniel N.
Nikovski
Devesh K.
Jha
Pu
(Perry)
WangDiego
Romeres
Chiori
Hori
Bingnan
Wang
Suhas
Lohit
Yebin
Wang
Hassan
Mansour
Matthew
Brand
Jing
Liu
Petros T.
Boufounos
Arvind
Raghunathan
Moitreya
Chatterjee
Abraham P.
Vinod
Kuan-Chuan
Peng
Jianlin
Guo
Siddarth
Jain
Vedang M.
Deshpande
François
Germain
Scott A.
Bortoff
Hongtao
Qiao
William S.
Yerazunis
Radu
Corcodel
Chungwei
Lin
Pedro
Miraldo
Saviz
Mowlavi
Dehong
Liu
James
Queeney
Hongbo
Sun
Wataru
Tsujita
Sameer
Khurana
Ryo
Aihara
Yanting
Ma
Joshua
Rapp
Anthony
Vetro
Jinyun
Zhang
Jose
Amaya
Purnanand
Elango
Abraham
Goldsmith
Yoshiki
Masuyama
Alexander
Schperberg
Avishai
Weiss
-
Awards
-
AWARD MERL Wins Awards at NeurIPS LLM Privacy Challenge Date: December 15, 2024
Awarded to: Jing Liu, Ye Wang, Toshiaki Koike-Akino, Tsunato Nakai, Kento Oonishi, Takuya Higashi
MERL Contacts: Toshiaki Koike-Akino; Jing Liu; Ye Wang
Research Areas: Artificial Intelligence, Machine Learning, Information SecurityBrief- The Mitsubishi Electric Privacy Enhancing Technologies (MEL-PETs) team, consisting of a collaboration of MERL and Mitsubishi Electric researchers, won awards at the NeurIPS 2024 Large Language Model (LLM) Privacy Challenge. In the Blue Team track of the challenge, we won the 3rd Place Award, and in the Red Team track, we won the Special Award for Practical Attack.
-
AWARD University of Padua and MERL team wins the AI Olympics with RealAIGym competition at IROS24 Date: October 17, 2024
Awarded to: Niccolò Turcato, Alberto Dalla Libera, Giulio Giacomuzzo, Ruggero Carli, Diego Romeres
MERL Contact: Diego Romeres
Research Areas: Artificial Intelligence, Dynamical Systems, Machine Learning, RoboticsBrief- The team composed of the control group at the University of Padua and MERL's Optimization and Robotic team ranked 1st out of the 4 finalist teams that arrived to the 2nd AI Olympics with RealAIGym competition at IROS 24, which focused on control of under-actuated robots. The team was composed by Niccolò Turcato, Alberto Dalla Libera, Giulio Giacomuzzo, Ruggero Carli and Diego Romeres. The competition was organized by the German Research Center for Artificial Intelligence (DFKI), Technical University of Darmstadt and Chalmers University of Technology.
The competition and award ceremony was hosted by IEEE International Conference on Intelligent Robots and Systems (IROS) on October 17, 2024 in Abu Dhabi, UAE. Diego Romeres presented the team's method, based on a model-based reinforcement learning algorithm called MC-PILCO.
- The team composed of the control group at the University of Padua and MERL's Optimization and Robotic team ranked 1st out of the 4 finalist teams that arrived to the 2nd AI Olympics with RealAIGym competition at IROS 24, which focused on control of under-actuated robots. The team was composed by Niccolò Turcato, Alberto Dalla Libera, Giulio Giacomuzzo, Ruggero Carli and Diego Romeres. The competition was organized by the German Research Center for Artificial Intelligence (DFKI), Technical University of Darmstadt and Chalmers University of Technology.
-
AWARD MERL team wins the Listener Acoustic Personalisation (LAP) 2024 Challenge Date: August 29, 2024
Awarded to: Yoshiki Masuyama, Gordon Wichern, Francois G. Germain, Christopher Ick, and Jonathan Le Roux
MERL Contacts: François Germain; Jonathan Le Roux; Gordon Wichern; Yoshiki Masuyama
Research Areas: Artificial Intelligence, Machine Learning, Speech & AudioBrief- MERL's Speech & Audio team ranked 1st out of 7 teams in Task 2 of the 1st SONICOM Listener Acoustic Personalisation (LAP) Challenge, which focused on "Spatial upsampling for obtaining a high-spatial-resolution HRTF from a very low number of directions". The team was led by Yoshiki Masuyama, and also included Gordon Wichern, Francois Germain, MERL intern Christopher Ick, and Jonathan Le Roux.
The LAP Challenge workshop and award ceremony was hosted by the 32nd European Signal Processing Conference (EUSIPCO 24) on August 29, 2024 in Lyon, France. Yoshiki Masuyama presented the team's method, "Retrieval-Augmented Neural Field for HRTF Upsampling and Personalization", and received the award from Prof. Michele Geronazzo (University of Padova, IT, and Imperial College London, UK), Chair of the Challenge's Organizing Committee.
The LAP challenge aims to explore challenges in the field of personalized spatial audio, with the first edition focusing on the spatial upsampling and interpolation of head-related transfer functions (HRTFs). HRTFs with dense spatial grids are required for immersive audio experiences, but their recording is time-consuming. Although HRTF spatial upsampling has recently shown remarkable progress with approaches involving neural fields, HRTF estimation accuracy remains limited when upsampling from only a few measured directions, e.g., 3 or 5 measurements. The MERL team tackled this problem by proposing a retrieval-augmented neural field (RANF). RANF retrieves a subject whose HRTFs are close to those of the target subject at the measured directions from a library of subjects. The HRTF of the retrieved subject at the target direction is fed into the neural field in addition to the desired sound source direction. The team also developed a neural network architecture that can handle an arbitrary number of retrieved subjects, inspired by a multi-channel processing technique called transform-average-concatenate.
- MERL's Speech & Audio team ranked 1st out of 7 teams in Task 2 of the 1st SONICOM Listener Acoustic Personalisation (LAP) Challenge, which focused on "Spatial upsampling for obtaining a high-spatial-resolution HRTF from a very low number of directions". The team was led by Yoshiki Masuyama, and also included Gordon Wichern, Francois Germain, MERL intern Christopher Ick, and Jonathan Le Roux.
See All Awards for Machine Learning -
-
News & Events
-
NEWS MERL researchers present 7 papers at CDC 2024 Date: December 16, 2024 - December 19, 2024
Where: Milan, Italy
MERL Contacts: Ankush Chakrabarty; Vedang M. Deshpande; Stefano Di Cairano; James Queeney; Abraham P. Vinod; Avishai Weiss; Gordon Wichern
Research Areas: Artificial Intelligence, Control, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, RoboticsBrief- MERL researchers presented 7 papers at the recently concluded Conference on Decision and Control (CDC) 2024 in Milan, Italy. The papers covered a wide range of topics including safety shielding for stochastic model predictive control, reinforcement learning using expert observations, physics-constrained meta learning for positioning, variational-Bayes Kalman filtering, Bayesian measurement masks for GNSS positioning, divert-feasible lunar landing, and centering and stochastic control using constrained zonotopes.
As a sponsor of the conference, MERL maintained a booth for open discussions with researchers and students, and hosted a special session to discuss highlights of MERL research and work philosophy.
In addition, Ankush Chakrabarty (Principal Research Scientist, Multiphysical Systems Team) was an invited speaker in the pre-conference Workshop on "Learning Dynamics From Data" where he gave a talk on few-shot meta-learning for black-box identification using data from similar systems.
- MERL researchers presented 7 papers at the recently concluded Conference on Decision and Control (CDC) 2024 in Milan, Italy. The papers covered a wide range of topics including safety shielding for stochastic model predictive control, reinforcement learning using expert observations, physics-constrained meta learning for positioning, variational-Bayes Kalman filtering, Bayesian measurement masks for GNSS positioning, divert-feasible lunar landing, and centering and stochastic control using constrained zonotopes.
-
NEWS MERL Researchers to Present 2 Conference and 11 Workshop Papers at NeurIPS 2024 Date: December 10, 2024 - December 15, 2024
Where: Advances in Neural Processing Systems (NeurIPS)
MERL Contacts: Petros T. Boufounos; Matthew Brand; Ankush Chakrabarty; Anoop Cherian; François Germain; Toshiaki Koike-Akino; Christopher R. Laughman; Jonathan Le Roux; Jing Liu; Suhas Lohit; Tim K. Marks; Yoshiki Masuyama; Kieran Parsons; Kuan-Chuan Peng; Diego Romeres; Pu (Perry) Wang; Ye Wang; Gordon Wichern
Research Areas: Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Human-Computer Interaction, Information SecurityBrief- MERL researchers will attend and present the following papers at the 2024 Advances in Neural Processing Systems (NeurIPS) Conference and Workshops.
1. "RETR: Multi-View Radar Detection Transformer for Indoor Perception" by Ryoma Yataka (Mitsubishi Electric), Adriano Cardace (Bologna University), Perry Wang (Mitsubishi Electric Research Laboratories), Petros Boufounos (Mitsubishi Electric Research Laboratories), Ryuhei Takahashi (Mitsubishi Electric). Main Conference. https://neurips.cc/virtual/2024/poster/95530
2. "Evaluating Large Vision-and-Language Models on Children's Mathematical Olympiads" by Anoop Cherian (Mitsubishi Electric Research Laboratories), Kuan-Chuan Peng (Mitsubishi Electric Research Laboratories), Suhas Lohit (Mitsubishi Electric Research Laboratories), Joanna Matthiesen (Math Kangaroo USA), Kevin Smith (Massachusetts Institute of Technology), Josh Tenenbaum (Massachusetts Institute of Technology). Main Conference, Datasets and Benchmarks track. https://neurips.cc/virtual/2024/poster/97639
3. "Probabilistic Forecasting for Building Energy Systems: Are Time-Series Foundation Models The Answer?" by Young-Jin Park (Massachusetts Institute of Technology), Jing Liu (Mitsubishi Electric Research Laboratories), François G Germain (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Gordon Wichern (Mitsubishi Electric Research Laboratories), Navid Azizan (Massachusetts Institute of Technology), Christopher R. Laughman (Mitsubishi Electric Research Laboratories), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories). Time Series in the Age of Large Models Workshop.
4. "Forget to Flourish: Leveraging Model-Unlearning on Pretrained Language Models for Privacy Leakage" by Md Rafi Ur Rashid (Penn State University), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Shagufta Mehnaz (Penn State University), Ye Wang (Mitsubishi Electric Research Laboratories). Workshop on Red Teaming GenAI: What Can We Learn from Adversaries?
5. "Spatially-Aware Losses for Enhanced Neural Acoustic Fields" by Christopher Ick (New York University), Gordon Wichern (Mitsubishi Electric Research Laboratories), Yoshiki Masuyama (Mitsubishi Electric Research Laboratories), François G Germain (Mitsubishi Electric Research Laboratories), Jonathan Le Roux (Mitsubishi Electric Research Laboratories). Audio Imagination Workshop.
6. "FV-NeRV: Neural Compression for Free Viewpoint Videos" by Sorachi Kato (Osaka University), Takuya Fujihashi (Osaka University), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Takashi Watanabe (Osaka University). Machine Learning and Compression Workshop.
7. "GPT Sonography: Hand Gesture Decoding from Forearm Ultrasound Images via VLM" by Keshav Bimbraw (Worcester Polytechnic Institute), Ye Wang (Mitsubishi Electric Research Laboratories), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories). AIM-FM: Advancements In Medical Foundation Models: Explainability, Robustness, Security, and Beyond Workshop.
8. "Smoothed Embeddings for Robust Language Models" by Hase Ryo (Mitsubishi Electric), Md Rafi Ur Rashid (Penn State University), Ashley Lewis (Ohio State University), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Kieran Parsons (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories). Safe Generative AI Workshop.
9. "Slaying the HyDRA: Parameter-Efficient Hyper Networks with Low-Displacement Rank Adaptation" by Xiangyu Chen (University of Kansas), Ye Wang (Mitsubishi Electric Research Laboratories), Matthew Brand (Mitsubishi Electric Research Laboratories), Pu Wang (Mitsubishi Electric Research Laboratories), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories). Workshop on Adaptive Foundation Models.
10. "Preference-based Multi-Objective Bayesian Optimization with Gradients" by Joshua Hang Sai Ip (University of California Berkeley), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories), Ali Mesbah (University of California Berkeley), Diego Romeres (Mitsubishi Electric Research Laboratories). Workshop on Bayesian Decision-Making and Uncertainty. Lightning talk spotlight.
11. "TR-BEACON: Shedding Light on Efficient Behavior Discovery in High-Dimensions with Trust-Region-based Bayesian Novelty Search" by Wei-Ting Tang (Ohio State University), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories), Joel A. Paulson (Ohio State University). Workshop on Bayesian Decision-Making and Uncertainty.
12. "MEL-PETs Joint-Context Attack for the NeurIPS 2024 LLM Privacy Challenge Red Team Track" by Ye Wang (Mitsubishi Electric Research Laboratories), Tsunato Nakai (Mitsubishi Electric), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Kento Oonishi (Mitsubishi Electric), Takuya Higashi (Mitsubishi Electric). LLM Privacy Challenge. Special Award for Practical Attack.
13. "MEL-PETs Defense for the NeurIPS 2024 LLM Privacy Challenge Blue Team Track" by Jing Liu (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Tsunato Nakai (Mitsubishi Electric), Kento Oonishi (Mitsubishi Electric), Takuya Higashi (Mitsubishi Electric). LLM Privacy Challenge. Won 3rd Place Award.
MERL members also contributed to the organization of the Multimodal Algorithmic Reasoning (MAR) Workshop (https://marworkshop.github.io/neurips24/). Organizers: Anoop Cherian (Mitsubishi Electric Research Laboratories), Kuan-Chuan Peng (Mitsubishi Electric Research Laboratories), Suhas Lohit (Mitsubishi Electric Research Laboratories), Honglu Zhou (Salesforce Research), Kevin Smith (Massachusetts Institute of Technology), Tim K. Marks (Mitsubishi Electric Research Laboratories), Juan Carlos Niebles (Salesforce AI Research), Petar Veličković (Google DeepMind).
- MERL researchers will attend and present the following papers at the 2024 Advances in Neural Processing Systems (NeurIPS) Conference and Workshops.
See All News & Events for Machine Learning -
-
Research Highlights
-
PS-NeuS: A Probability-guided Sampler for Neural Implicit Surface Rendering -
Quantum AI Technology -
TI2V-Zero: Zero-Shot Image Conditioning for Text-to-Video Diffusion Models -
Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-Aware Spatio-Temporal Sampling -
Steered Diffusion -
Sustainable AI -
Edge-Assisted Internet of Vehicles for Smart Mobility -
Robust Machine Learning -
mmWave Beam-SNR Fingerprinting (mmBSF) -
Video Anomaly Detection -
Biosignal Processing for Human-Machine Interaction -
MERL Shopping Dataset
-
-
Internships
-
CI0080: Internship - Efficient AI
We are on the lookout for passionate and skilled interns to join our cutting-edge research team focused on developing efficient machine learning techniques for sustainability. This is an exciting opportunity to make a real impact in the field of AI and environmental conservation, with the aim of publishing at leading AI research venues.
What We're Looking For:
- Advanced research experience in generative models and computationally efficient models
- Hands-on skills for large language models (LLM), vision language models (VLM), large multi-modal models (LMM), foundation models (FoMo)
- Deep understanding of state-of-the-art machine learning methods
- Proficiency in Python and PyTorch
- Familiarity with various deep learning frameworks
- Ph.D. candidates who have completed at least half of their program
Internship Details:
- Duration: approximately 3 months
- Flexible start dates available
- Objective: publish research results at leading AI research venues
If you are a highly motivated individual with a passion for applying AI to sustainability challenges, we want to hear from you! This internship offers a unique chance to work on meaningful projects at the intersection of machine learning and environmental sustainability.
-
EA0076: Internship - Machine Learning for Electric Motor Design
MERL is seeking a motivated and qualified intern to conduct research on machine learning based electric motor design and optimization. Ideal candidates should be Ph.D. students with a solid background and publication record in electric machine design, optimization, and machine learning. Hands-on experience with the implementation of optimization algorithms, machine learning and deep learning methods is required. Strong programming skills using Python/PyTorch are expected. Knowledge and experience with electric machine principle, design and finite-element analysis are highly desirable. Start date for this internship is flexible and the duration is about 3 months.
-
CA0114: Internship - Trajectory planning for drones with controllable sensors
MERL is seeking an outstanding intern to collaborate with the Control for Autonomy team in the development of trajectory generation for mobile robots, e.g., drones, equipped with controllable sensors, for information acquisition tasks. The project objective is to optimize drone trajectories and the control of on board sensors (e.g., field of view, pointing angle, etc.) to maximize the amount of information acquired about specified monitored targets while reducing the mission duration. The ideal candidate is expected to be working towards a PhD with a strong emphasis on trajectory generation and control, optimization-based control and planning algorithms and constrained control. Strong programming skills in at least one among Matlab, Python, Julia, C/C++ are required. Experience with experimental drone platforms such as crazyflie, and related software frameworks, such as ROS, are desired. The expected start date is in the late Spring/Early Summer 2025, for a duration of 3-6 months.
Required Specific Experience
- Currently enrolled in a PhD program in Aerospace, Electrical, Mechanical Engineering, Computer Science, Applied Math or a related field
- 2+ years of research in at least some of: optimization-based trajectory generation, convex and non-convex optimization, sensor modeling, information-aware planning
- Strong programming skills in at least one among Matlab, Python, Julia, or C/C++
- Validation of drone planning and control in simulations. Experience with drone experiments is a plus.
See All Internships for Machine Learning -
-
Openings
-
CV0124: Postdoctoral Research Fellow - 3D Computer Vision
-
EA0042: Research Scientist - Control & Learning
-
CI0130: Postdoctoral Research Fellow - Artificial General Intelligence (AGI)
-
CA0093: Research Scientist - Control for Autonomous Systems
See All Openings at MERL -
-
Recent Publications
- "Decentralized, Safe, Multi-agent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning", IEEE Transactions on Control Systems Technology, DOI: 10.1109/TCST.2024.3433229, Vol. 32, No. 6, pp. 2492-2499, January 2025.BibTeX TR2024-136 PDF
- @article{Vinod2025jan,
- author = {Vinod, Abraham P. and Safaoui, Sleiman and Summers, Tyler and Yoshikawa, Nobuyuki and Di Cairano, Stefano}},
- title = {Decentralized, Safe, Multi-agent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning},
- journal = {IEEE Transactions on Control Systems Technology},
- year = 2025,
- volume = 32,
- number = 6,
- pages = {2492--2499},
- month = jan,
- doi = {10.1109/TCST.2024.3433229},
- url = {https://www.merl.com/publications/TR2024-136}
- }
, - "Rotation-Equivariant Neural Networks for Cloud Removal from Satellite Images", Asilomar Conference on Signals, Systems, and Computers (ACSSC), January 2025.BibTeX TR2025-009 PDF
- @inproceedings{Lohit2025jan,
- author = {Lohit, Suhas and Marks, Tim K.}},
- title = {Rotation-Equivariant Neural Networks for Cloud Removal from Satellite Images},
- booktitle = {Asilomar Conference on Signals, Systems, and Computers (ACSSC)},
- year = 2025,
- month = jan,
- url = {https://www.merl.com/publications/TR2025-009}
- }
, - "SoundLoc3D: Invisible 3D Sound Source Localization and Classification Using a Multimodal RGB-D Acoustic Camera", IEEE Winter Conference on Applications of Computer Vision (WACV), December 2024.BibTeX TR2025-003 PDF
- @inproceedings{He2024dec2,
- author = {He, Yuhang and Shin, Sangyun and Cherian, Anoop and Trigoni, Niki and Markham, Andrew}},
- title = {SoundLoc3D: Invisible 3D Sound Source Localization and Classification Using a Multimodal RGB-D Acoustic Camera},
- booktitle = {IEEE Winter Conference on Applications of Computer Vision (WACV)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2025-003}
- }
, - "Temporally Grounding Instructional Diagrams in Unconstrained Videos", IEEE Winter Conference on Applications of Computer Vision (WACV), December 2024.BibTeX TR2025-002 PDF
- @inproceedings{Zhang2024dec,
- author = {Zhang, Jiahao and Zhang, Frederic and Rodriguez, Cristian and Ben-Shabat, Itzik and Cherian, Anoop and Gould, Stephen}},
- title = {Temporally Grounding Instructional Diagrams in Unconstrained Videos},
- booktitle = {IEEE Winter Conference on Applications of Computer Vision (WACV)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2025-002}
- }
, - "Physics-Constrained Meta-Learning for Online Adaptation and Estimation in Positioning Applications", IEEE Conference on Decision and Control (CDC), December 2024.BibTeX TR2024-180 PDF
- @inproceedings{Chakrabarty2024dec,
- author = {Chakrabarty, Ankush and Deshpande, Vedang M. and Wichern, Gordon and Berntorp, Karl}},
- title = {Physics-Constrained Meta-Learning for Online Adaptation and Estimation in Positioning Applications},
- booktitle = {IEEE Conference on Decision and Control (CDC)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-180}
- }
, - "A Model-Based Approach for Improving Reinforcement Learning Efficiency Leveraging Expert Observations", IEEE Conference on Decision and Control (CDC), December 2024.BibTeX TR2024-178 PDF
- @inproceedings{Ozcan2024dec,
- author = {Ozcan, Erhan Can and Giammarino, Vittorio and Queeney, James and Paschalidis, Ioannis Ch.}},
- title = {A Model-Based Approach for Improving Reinforcement Learning Efficiency Leveraging Expert Observations},
- booktitle = {IEEE Conference on Decision and Control (CDC)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-178}
- }
, - "GPT Sonograpy: Hand Gesture Decoding from Forearm Ultrasound Images via VLM", Advances in Neural Information Processing Systems (NeurIPS), December 2024.BibTeX TR2024-175 PDF Presentation
- @inproceedings{Bimbraw2024dec,
- author = {{Bimbraw, Keshav and Wang, Ye and Liu, Jing and Koike-Akino, Toshiaki}},
- title = {GPT Sonograpy: Hand Gesture Decoding from Forearm Ultrasound Images via VLM},
- booktitle = {Advancements In Medical Foundation Models: Explainability, Robustness, Security, and Beyond Workshop at Neural Information Processing Systems (NeurIPS)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-175}
- }
, - "Slaying the HyDRA: Parameter-Efficient Hyper Networks with Low-Displacement Rank Adaptation", Advances in Neural Information Processing Systems (NeurIPS), December 2024.BibTeX TR2024-157 PDF Presentation
- @inproceedings{Chen2024dec,
- author = {{Chen, Xiangyu and Wang, Ye and Brand, Matthew and Wang, Pu and Liu, Jing and Koike-Akino, Toshiaki}},
- title = {Slaying the HyDRA: Parameter-Efficient Hyper Networks with Low-Displacement Rank Adaptation},
- booktitle = {Workshop on Adaptive Foundation Models: Evolving AI for Personalized and Efficient Learning at Neural Information Processing Systems (NeurIPS)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-157}
- }
,
- "Decentralized, Safe, Multi-agent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning", IEEE Transactions on Control Systems Technology, DOI: 10.1109/TCST.2024.3433229, Vol. 32, No. 6, pp. 2492-2499, January 2025.
-
Videos
-
Software & Data Downloads
-
MEL-PETs Joint-Context Attack for LLM Privacy Challenge -
Generalization in Deep RL with a Robust Adaptation Module -
Retrieval-Augmented Neural Field for HRTF Upsampling and Personalization -
MEL-PETs Defense for LLM Privacy Challenge -
ComplexVAD Dataset -
Stabilizing Subject Transfer in EEG Classification with Divergence Estimation -
Learned Born Operator for Reflection Tomographic Imaging -
Radar dEtection TRansformer -
Millimeter-wave Multi-View Radar Dataset -
Gear Extensions of Neural Radiance Fields -
Long-Tailed Anomaly Detection Dataset -
Target-Speaker SEParation -
Pixel-Grounded Prototypical Part Networks -
Steered Diffusion -
BAyesian Network for adaptive SAmple Consensus -
Meta-Learning State Space Models -
Explainable Video Anomaly Localization -
Simple Multimodal Algorithmic Reasoning Task Dataset -
Partial Group Convolutional Neural Networks -
SOurce-free Cross-modal KnowledgE Transfer -
Audio-Visual-Language Embodied Navigation in 3D Environments -
Nonparametric Score Estimators -
3D MOrphable STyleGAN -
Instance Segmentation GAN -
Audio Visual Scene-Graph Segmentor -
Generalized One-class Discriminative Subspaces -
Hierarchical Musical Instrument Separation -
Generating Visual Dynamics from Sound and Context -
Adversarially-Contrastive Optimal Transport -
Online Feature Extractor Network -
MotionNet -
FoldingNet++ -
Quasi-Newton Trust Region Policy Optimization -
Landmarks’ Location, Uncertainty, and Visibility Likelihood -
Robust Iterative Data Estimation -
Gradient-based Nikaido-Isoda -
Circular Maze Environment -
Discriminative Subspace Pooling -
Kernel Correlation Network -
Fast Resampling on Point Clouds via Graphs -
FoldingNet -
Deep Category-Aware Semantic Edge Detection -
MERL Shopping Dataset
-