TR99-38
Correctness of belief propagation in Gaussian graphical models of arbitrary topology
-   
-  , "Correctness of belief propagation in Gaussian graphical models of arbitrary topology", Tech. Rep. TR99-38, Mitsubishi Electric Research Laboratories, Cambridge, MA, October 1999.BibTeX TR99-38 PDF
- @techreport{MERL_TR99-38,
 - author = {Yair Weiss, William T. Freeman},
 - title = {Correctness of belief propagation in Gaussian graphical models of arbitrary topology},
 - institution = {MERL - Mitsubishi Electric Research Laboratories},
 - address = {Cambridge, MA 02139},
 - number = {TR99-38},
 - month = oct,
 - year = 1999,
 - url = {https://www.merl.com/publications/TR99-38/}
 - }
 
 
 -  , "Correctness of belief propagation in Gaussian graphical models of arbitrary topology", Tech. Rep. TR99-38, Mitsubishi Electric Research Laboratories, Cambridge, MA, October 1999.
 -   
Research Areas:
 
Abstract:
Local \"belief propagation\" rules of the sort proposed by Pearl [12] are guaranteed to converge to the correct posterior probabilities in singly connected graphical models. Recently, a number of researchers have empirically demonstrated good performance of \"loopy belief propagation\" -- using these same rules on graphs with loops. Perhaps the most dramatic instance is the near Shannon-limit performance of \"Turbo codes,\" whose decoding algorithm is equivalent to loopy belief propagation. These results motivate using the powerful belief propagation algorithm in a broader class of networks, and help clarify the empirical performance results.