TR2008-033

Kernel Integral Images: A Framework for Fast Non-Uniform Filtering


TR Image
Speedups of using integral images compared to conventional method. These plots consider speedups when adding construction time to filtering time.
Abstract:

Integral images are commonly used in computer vision and computer graphics applications. Evaluation of box filters via integral images can be performed in constant time, regardless of the filter size. Although Heckbert [6] extended the integral image approach for more complex filters, its usage has been very limited, in practice. In this paper, we present an extension to integral images that allows for application of a wide class of non-uniform filters. Our approach is superior to Heckbert's in terms of precision requirements and suitability for parallelization. We explain the theoretical basis of the approach and instantiate two concrete examples: filtering with bilinear interpolation, and filtering with approximated Gaussian weighting. Our experiments show the significant speedups we achieve, and the higher accuracy of our approach compared to Heckbert's.

 

  • Related News & Events

    •  NEWS    CVPR 2008: 8 publications by Jay Thornton, Shantanu D. Rane, Oncel Tuzel, Matthew Brand, Anthony Vetro and Amit K. Agrawal
      Date: June 28, 2008
      Where: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
      MERL Contacts: Matthew Brand; Anthony Vetro
      Brief
      • The papers "Non-Refractive Modulators for Encoding and Capturing Scene Appearance and Depth" by Veeraraghavan, A., Agrawal, A., Raskar, R., Mohan, A. and Tumblin, J., "Feature Transformation of Biometric Templates for Secure Biometric Systems based on Error Correcting Codes" by Sutcu, Y., Rane, S., Yedidia, J.S., Draper, S.C. and Vetro, A., "Constant Time O(1) Bilateral Filtering" by Porikli, F., "Learning on Lie Groups for Invariant Detection and Tracking" by Tuzel, O., Porikli, F. and Meer, P., "Kernel Integral Images: A Framework for Fast non-Uniform Filtering" by Hussein, M., Porikli, F. and Davis, L., "A Conditional Random Field for Automatic Photo Editing" by Brand, M. and Pletscher, P., "Boosting Adaptive Linear Weak Classifiers for Online Learning and Tracking" by Parag, T., Porikli, F. and Elgammai, A. and "Sensing Increased Image Resolution Using Aperture Masks" by Mohan, A., Huang, X., Tumblin, J. and Raskar, R. were presented at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
    •