TR2012-019

Additive Noise Removal by Sparse Reconstruction on Image Affinity Nets


Abstract:

This paper presents a new image denoising method based on sparse reconstruction by dictionary learning and collaborative filtering. First, we form an affinity net, in which a node represents an image patch, for the given image by clustering similar patches. For each cluster, we learn an undercomplete dictionary and represent clusters nodes by imposing sparsity inducing norm as a combination of few atoms. Depending on its affinity to other nodes, a single node could be present in multiple clusters making the clusters overlapping. This enables a single global estimation for each filtered pixel to be obtained by collaboratively aggregating its reconstructed patches in the corresponding clusters. Extensive experimental results demonstrate superior performance for additive noise removal without requiring the correct noise variance.

 

  • Related News & Events

    •  NEWS    ICASSP 2012: 8 publications by Petros T. Boufounos, Dehong Liu, John R. Hershey, Jonathan Le Roux and Zafer Sahinoglu
      Date: March 25, 2012
      Where: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
      MERL Contacts: Dehong Liu; Jonathan Le Roux; Petros T. Boufounos
      Brief
      • The papers "Dictionary Learning Based Pan-Sharpening" by Liu, D. and Boufounos, P.T., "Multiple Dictionary Learning for Blocking Artifacts Reduction" by Wang, Y. and Porikli, F., "A Compressive Phase-Locked Loop" by Schnelle, S.R., Slavinsky, J.P., Boufounos, P.T., Davenport, M.A. and Baraniuk, R.G., "Indirect Model-based Speech Enhancement" by Le Roux, J. and Hershey, J.R., "A Clustering Approach to Optimize Online Dictionary Learning" by Rao, N. and Porikli, F., "Parametric Multichannel Adaptive Signal Detection: Exploiting Persymmetric Structure" by Wang, P., Sahinoglu, Z., Pun, M.-O. and Li, H., "Additive Noise Removal by Sparse Reconstruction on Image Affinity Nets" by Sundaresan, R. and Porikli, F. and "Depth Sensing Using Active Coherent Illumination" by Boufounos, P.T. were presented at the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).
    •