TR99-05

Learning to estimate scenes from images


    •  William T. Freeman, Egon C. Pasztor, "Learning to estimate scenes from images", Tech. Rep. TR99-05, Mitsubishi Electric Research Laboratories, Cambridge, MA, January 1999.
      BibTeX TR99-05 PDF
      • @techreport{MERL_TR99-05,
      • author = {William T. Freeman, Egon C. Pasztor},
      • title = {Learning to estimate scenes from images},
      • institution = {MERL - Mitsubishi Electric Research Laboratories},
      • address = {Cambridge, MA 02139},
      • number = {TR99-05},
      • month = jan,
      • year = 1999,
      • url = {https://www.merl.com/publications/TR99-05/}
      • }
  • Research Areas:

    Artificial Intelligence, Computer Vision, Machine Learning

Abstract:

We seek the scene interpretation that best explains image data. For example, we may want to infer the projected velocities (scene) which best explain two consecutive image frames (image). From synthetic data, we model the relationship between image and scene patches, and between a scene patch and neighboring scene patches. Given a new image, we propagate likelihoods in a Markov network (ignoring the effect of loops) to infer the underlying scene. This yields an efficient method to form low-level scene interpretations. We demonstrate the technique for motion analysis and estimating high resolution images from low-resolution ones.