AWARD    MERL team wins the Listener Acoustic Personalisation (LAP) 2024 Challenge

Date released: September 17, 2024


  •  AWARD    MERL team wins the Listener Acoustic Personalisation (LAP) 2024 Challenge
  • Date:

    August 29, 2024

  • Awarded to:

    Yoshiki Masuyama, Gordon Wichern, Francois G. Germain, Christopher Ick, and Jonathan Le Roux

  • Description:

    MERL's Speech & Audio team ranked 1st out of 7 teams in Task 2 of the 1st SONICOM Listener Acoustic Personalisation (LAP) Challenge, which focused on "Spatial upsampling for obtaining a high-spatial-resolution HRTF from a very low number of directions". The team was led by Yoshiki Masuyama, and also included Gordon Wichern, Francois Germain, MERL intern Christopher Ick, and Jonathan Le Roux.

    The LAP Challenge workshop and award ceremony was hosted by the 32nd European Signal Processing Conference (EUSIPCO 24) on August 29, 2024 in Lyon, France. Yoshiki Masuyama presented the team's method, "Retrieval-Augmented Neural Field for HRTF Upsampling and Personalization", and received the award from Prof. Michele Geronazzo (University of Padova, IT, and Imperial College London, UK), Chair of the Challenge's Organizing Committee.

    The LAP challenge aims to explore challenges in the field of personalized spatial audio, with the first edition focusing on the spatial upsampling and interpolation of head-related transfer functions (HRTFs). HRTFs with dense spatial grids are required for immersive audio experiences, but their recording is time-consuming. Although HRTF spatial upsampling has recently shown remarkable progress with approaches involving neural fields, HRTF estimation accuracy remains limited when upsampling from only a few measured directions, e.g., 3 or 5 measurements. The MERL team tackled this problem by proposing a retrieval-augmented neural field (RANF). RANF retrieves a subject whose HRTFs are close to those of the target subject at the measured directions from a library of subjects. The HRTF of the retrieved subject at the target direction is fed into the neural field in addition to the desired sound source direction. The team also developed a neural network architecture that can handle an arbitrary number of retrieved subjects, inspired by a multi-channel processing technique called transform-average-concatenate.

  • MERL Contacts:
  • External Link:

    https://www.sonicom.eu/lap-challenge/

  • Research Areas:

    Artificial Intelligence, Machine Learning, Speech & Audio

    •  Masuyama, Y., Wichern, G., Germain, F.G., Pan, Z., Khurana, S., Hori, C., Le Roux, J., "NIIRF: Neural IIR Filter Field for HRTF Upsampling and Personalization", IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), DOI: 10.1109/​ICASSP48485.2024.10448477, March 2024, pp. 1016-1020.
      BibTeX TR2024-026 PDF Software
      • @inproceedings{Masuyama2024mar,
      • author = {Masuyama, Yoshiki and Wichern, Gordon and Germain, François G and Pan, Zexu and Khurana, Sameer and Hori, Chiori and Le Roux, Jonathan},
      • title = {NIIRF: Neural IIR Filter Field for HRTF Upsampling and Personalization},
      • booktitle = {IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)},
      • year = 2024,
      • pages = {1016--1020},
      • month = mar,
      • doi = {10.1109/ICASSP48485.2024.10448477},
      • url = {https://www.merl.com/publications/TR2024-026}
      • }