TR2022-068

AutoQML: Automated Quantum Machine Learning for Wi-Fi Integrated Sensing and Communications


Abstract:

Commercial Wi-Fi devices can be used for integrated sensing and communications (ISAC) to jointly exchange data and monitor indoor environment. In this paper, we investigate a proof-of-concept approach using automated quantum machine learning (AutoQML) framework called AutoAnsatz to recognize human gesture. We address how to efficiently design quantum circuits to configure quantum neural networks (QNN). The effectiveness of AutoQML is validated by an in-house experiment for human pose recognition, achieving state-of-theart performance greater than 80% accuracy for a limited data size with a significantly small number of trainable parameters. Index Terms—Integrated sensing and communication (ISAC), Wi-Fi sensing, human monitoring, quantum machine learning.

 

  • Related News & Events

    •  NEWS    Toshiaki Koike-Akino to give a seminar talk at EPFL on quantum AI
      Date: May 22, 2024
      MERL Contact: Toshiaki Koike-Akino
      Research Areas: Artificial Intelligence, Machine Learning
      Brief
      • Toshiaki Koike-Akino is invited to present a seminar talk at EPFL, Switzerland. The talk, entitled "Post-Deep Learning: Emerging Quantum AI Technology", will discuss the recent trends, challenges, and applications of quantum machine learning (QML) technologies. The seminar is organized by Prof. Volkan Cevher and Prof. Giovanni De Micheli. The event invites students, researchers, scholars and professors through EPFL departments including School of Engineering, Communication Science, Life Science, Machine Learning and AI Center.
    •  
    •  NEWS    MERL Researchers give a Tutorial Talk on Quantum Machine Learning for Sensing and Communications at IEEE VCC
      Date: November 28, 2023 - November 30, 2023
      Where: Virtual
      MERL Contacts: Toshiaki Koike-Akino; Pu (Perry) Wang
      Research Areas: Artificial Intelligence, Communications, Computational Sensing, Machine Learning, Signal Processing
      Brief
      • On November 28, 2023, MERL researchers Toshiaki Koike-Akino and Pu (Perry) Wang will give a 3-hour tutorial presentation at the first IEEE Virtual Conference on Communications (VCC). The talk, titled "Post-Deep Learning Era: Emerging Quantum Machine Learning for Sensing and Communications," addresses recent trends, challenges, and advances in sensing and communications. P. Wang presents use cases, industry trends, signal processing, and deep learning for Wi-Fi integrated sensing and communications (ISAC), while T. Koike-Akino discusses the future of deep learning, giving a comprehensive overview of artificial intelligence (AI) technologies, natural computing, emerging quantum AI, and their diverse applications. The tutorial is conducted virtually.

        IEEE VCC is a new fully virtual conference launched from the IEEE Communications Society, gathering researchers from academia and industry who are unable to travel but wish to present their recent scientific results and engage in conducive interactive discussions with fellow researchers working in their fields. It is designed to resolve potential hardship such as pandemic restrictions, visa issues, travel problems, or financial difficulties.
    •  
    •  NEWS    MERL Researchers gave a Tutorial Talk on Quantum Machine Learning for Sensing and Communications at IEEE GLOBECOM
      Date: December 8, 2022
      MERL Contacts: Toshiaki Koike-Akino; Pu (Perry) Wang
      Research Areas: Artificial Intelligence, Communications, Computational Sensing, Machine Learning, Signal Processing
      Brief
      • On December 8, 2022, MERL researchers Toshiaki Koike-Akino and Pu (Perry) Wang gave a 3.5-hour tutorial presentation at the IEEE Global Communications Conference (GLOBECOM). The talk, titled "Post-Deep Learning Era: Emerging Quantum Machine Learning for Sensing and Communications," addressed recent trends, challenges, and advances in sensing and communications. P. Wang presented on use cases, industry trends, signal processing, and deep learning for Wi-Fi integrated sensing and communications (ISAC), while T. Koike-Akino discussed the future of deep learning, giving a comprehensive overview of artificial intelligence (AI) technologies, natural computing, emerging quantum AI, and their diverse applications. The tutorial was conducted remotely. MERL's quantum AI technology was partly reported in the recent press release (https://us.mitsubishielectric.com/en/news/releases/global/2022/1202-a/index.html).

        The IEEE GLOBECOM is a highly anticipated event for researchers and industry professionals in the field of communications. Organized by the IEEE Communications Society, the flagship conference is known for its focus on driving innovation in all aspects of the field. Each year, over 3,000 scientific researchers submit proposals for program sessions at the annual conference. The theme of this year's conference was "Accelerating the Digital Transformation through Smart Communications," and featured a comprehensive technical program with 13 symposia, various tutorials and workshops.
    •  
    •  NEWS    MERL's Quantum Machine Learning Technology Featured in Mitsubishi Electric Corporation Press Release
      Date: December 2, 2022
      MERL Contacts: Toshiaki Koike-Akino; Kieran Parsons; Pu (Perry) Wang; Ye Wang
      Research Areas: Artificial Intelligence, Computational Sensing, Machine Learning, Signal Processing, Human-Computer Interaction
      Brief
      • Mitsubishi Electric Corporation announced its development of a quantum artificial intelligence (AI) technology that automatically optimizes inference models to downsize the scale of computation with quantum neural networks. The new quantum AI technology can be integrated with classical machine learning frameworks for diverse solutions.

        Mitsubishi Electric has confirmed that the technology can be incorporated in the world's first applications for terahertz (THz) imaging, Wi-Fi indoor monitoring, compressed sensing, and brain-computer interfaces. The technology is based on recent research by MERL's Connectivity & Information Processing team and Computational Sensing team.

        Mitsubishi Electric's new quantum machine learning (QML) technology realizes compact inference models by fully exploiting the enormous capacity of quantum computers to express exponentially larger-state space with the number of quantum bits (qubits). In a hybrid combination of both quantum and classical AI, the technology can compensate for limitations of classical AI to achieve superior performance while significantly downsizing the scale of AI models, even when using limited data.
    •  
  • Related Video

  • Related Publication

  •  Koike-Akino, T., Wang, P., Wang, Y., "AutoQML: Automated Quantum Machine Learning for Wi-Fi Integrated Sensing and Communications", arXiv, May 2022.
    BibTeX arXiv
    • @article{Koike-Akino2022may4,
    • author = {Koike-Akino, Toshiaki and Wang, Pu and Wang, Ye},
    • title = {AutoQML: Automated Quantum Machine Learning for Wi-Fi Integrated Sensing and Communications},
    • journal = {arXiv},
    • year = 2022,
    • month = may,
    • url = {https://arxiv.org/abs/2205.09115}
    • }