TR2025-051

Quantum-PEFT: Ultra Parameter-Efficient Fine-Tuning


    •  Koike-Akino, T., Tonin, F., Wu, Y., Wu, F.Z., Candogan, L.N., Cevher, V., "Quantum-PEFT: Ultra Parameter-Efficient Fine-Tuning", International Conference on Learning Representations (ICLR), April 2025.
      BibTeX TR2025-051 PDF
      • @inproceedings{Koike-Akino2025apr,
      • author = {Koike-Akino, Toshiaki and Tonin,Francesco and Wu,Yongtao and Wu,Frank Zhengqing and Candogan,Leyla Naz and Cevher, Volkan},
      • title = {{Quantum-PEFT: Ultra Parameter-Efficient Fine-Tuning}},
      • booktitle = {International Conference on Learning Representations (ICLR)},
      • year = 2025,
      • month = apr,
      • url = {https://www.merl.com/publications/TR2025-051}
      • }
  • MERL Contact:
  • Research Areas:

    Artificial Intelligence, Machine Learning

Abstract:

This paper introduces Quantum-PEFT that leverages quantum computations for parameter-efficient fine-tuning (PEFT). Unlike other additive PEFT methods, such as low-rank adaptation (LoRA), Quantum-PEFT exploits an underlying full-rank yet surprisingly parameter-efficient quantum unitary parameterization. With the use of Pauli parameterization, the number of trainable parameters grows only logarithmically with the ambient dimension, as opposed to linearly as in LoRA- based PEFT methods. Quantum-PEFT achieves vanishingly smaller number of trainable parameters than the lowest-rank LoRA as dimensions grow, enhancing parameter efficiency while maintaining a competitive performance. We apply Quantum-PEFT to several transfer learning benchmarks in language and vision, demonstrating significant advantages in parameter efficiency

 

  • Related Publication

  •  Koike-Akino, T., Tonin, F., Wu, Y., Wu, F.Z., Candogan, L.N., Volkan Cevher,, "Quantum-PEFT: Ultra parameter-efficient fine-tuning", arXiv, March 2025.
    BibTeX arXiv
    • @article{Koike-Akino2025mar,
    • author = {Koike-Akino, Toshiaki and Tonin, Francesco and Wu, Yongtao and Wu, Frank Zhengqing and Candogan, Leyla Naz and Volkan Cevher},
    • title = {{Quantum-PEFT: Ultra parameter-efficient fine-tuning}},
    • journal = {arXiv},
    • year = 2025,
    • month = mar,
    • url = {https://arxiv.org/abs/2503.05431}
    • }