TR2022-163

Optimal Control of PDEs Using Physics-Informed Neural Networks


Abstract:

Physics-informed neural networks (PINNs) have recently become a popular method for solving forward and inverse problems governed by partial differential equations (PDEs). By incorporating the residual of the PDE into the loss function of a neural network-based surrogate model for the unknown state, PINNs can seamlessly blend measurement data with physical constraints. Here, we extend this framework to PDE-constrained optimal control problems, for which the governing PDE is fully known and the goal is to find a control variable that minimizes a desired cost objective. Importantly, we validate the performance of the PINN framework by comparing it to state-of-the-art adjoint-based optimization, which performs gradient descent on the discretized control variable while satisfying the discretized PDE. This comparison, carried out on challenging problems based on the nonlinear Kuramoto-Sivashinsky and Navier-Stokes equations, sheds light on the pros and cons of the PINN and adjoint-based approaches for solving PDE-constrained optimal control problems.

 

  • Related News & Events

    •  NEWS    Keynote address given by Philip Orlik at 9th annual IEEE Smartcomp conference
      Date: June 26, 2023
      Where: International Conference on Smart Computing (SMARTCOMP), Vanderbilt University, Nashville, Tennessee
      MERL Contact: Philip V. Orlik
      Research Areas: Communications, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Signal Processing
      Brief
      • VP & Research Director, Philip Orlik, gave a keynote titled, "Smart Technologies for Smarter Buildings" at the 9th edition of the IEEE International Conference on Smart Computing (SMARTCOMP) focusing on some of the research challenges and opportunities that arise as we seek to achieve net-zero emissions in Smart building environments.

        SMARTCOMP is the premier conference on smart computing. Smart computing is a multidisciplinary domain based on the synergistic influence of advances in sensor-based technologies, Internet of Things, cyber-physical systems, edge computing, big data analytics, machine learning, cognitive computing, and artificial intelligence.
    •  
    •  NEWS    MERL researchers presenting workshop papers at NeurIPS 2022
      Date: December 2, 2022 - December 8, 2022
      MERL Contacts: Matthew Brand; Toshiaki Koike-Akino; Jing Liu; Saviz Mowlavi; Kieran Parsons; Ye Wang
      Research Areas: Artificial Intelligence, Control, Dynamical Systems, Machine Learning, Signal Processing
      Brief
      • In addition to 5 papers in recent news (https://www.merl.com/news/news-20221129-1450), MERL researchers presented 2 papers at the NeurIPS Conference Workshop, which was held Dec. 2-8. NeurIPS is one of the most prestigious and competitive international conferences in machine learning.

        - “Optimal control of PDEs using physics-informed neural networks” by Saviz Mowlavi and Saleh Nabi

        Physics-informed neural networks (PINNs) have recently become a popular method for solving forward and inverse problems governed by partial differential equations (PDEs). By incorporating the residual of the PDE into the loss function of a neural network-based surrogate model for the unknown state, PINNs can seamlessly blend measurement data with physical constraints. Here, we extend this framework to PDE-constrained optimal control problems, for which the governing PDE is fully known and the goal is to find a control variable that minimizes a desired cost objective. We validate the performance of the PINN framework by comparing it to state-of-the-art adjoint-based optimization, which performs gradient descent on the discretized control variable while satisfying the discretized PDE.

        - “Learning with noisy labels using low-dimensional model trajectory” by Vasu Singla, Shuchin Aeron, Toshiaki Koike-Akino, Matthew E. Brand, Kieran Parsons, Ye Wang

        Noisy annotations in real-world datasets pose a challenge for training deep neural networks (DNNs), detrimentally impacting generalization performance as incorrect labels may be memorized. In this work, we probe the observations that early stopping and low-dimensional subspace learning can help address this issue. First, we show that a prior method is sensitive to the early stopping hyper-parameter. Second, we investigate the effectiveness of PCA, for approximating the optimization trajectory under noisy label information. We propose to estimate the low-rank subspace through robust and structured variants of PCA, namely Robust PCA, and Sparse PCA. We find that the subspace estimated through these variants can be less sensitive to early stopping, and can outperform PCA to achieve better test error when trained on noisy labels.

        - In addition, new MERL researcher, Jing Liu, also presented a paper entitled “CoPur: Certifiably Robust Collaborative Inference via Feature Purification" based on his previous work before joining MERL. His paper was elected as a spotlight paper to be highlighted in lightening talks and featured paper panel.
    •  
  • Related Publications

  •  Mowlavi, S., Nabi, S., "Optimal control of PDEs using physics-informed neural networks", Journal of Computational Physics, DOI: j.jcp.2022.111731, Vol. 473, pp. 111731, October 2022.
    BibTeX TR2022-143 PDF
    • @article{Mowlavi2022oct,
    • author = {Mowlavi, Saviz and Nabi, Saleh},
    • title = {Optimal control of PDEs using physics-informed neural networks},
    • journal = {Journal of Computational Physics},
    • year = 2022,
    • volume = 473,
    • pages = 111731,
    • month = oct,
    • doi = {j.jcp.2022.111731},
    • url = {https://www.merl.com/publications/TR2022-143}
    • }
  •  Mowlavi, S., Nabi, S., "Optimal control of PDEs using physics-informed neural networks", arXiv, November 2021.
    BibTeX arXiv
    • @article{Mowlavi2021nov,
    • author = {Mowlavi, Saviz and Nabi, Saleh},
    • title = {Optimal control of PDEs using physics-informed neural networks},
    • journal = {arXiv},
    • year = 2021,
    • month = nov,
    • url = {https://arxiv.org/abs/2111.09880}
    • }