TR2024-178
A Model-Based Approach for Improving Reinforcement Learning Efficiency Leveraging Expert Observations
-
- "A Model-Based Approach for Improving Reinforcement Learning Efficiency Leveraging Expert Observations", IEEE Conference on Decision and Control (CDC), December 2024.BibTeX TR2024-178 PDF
- @inproceedings{Ozcan2024dec,
- author = {Ozcan, Erhan Can and Giammarino, Vittorio and Queeney, James and Paschalidis, Ioannis Ch.}},
- title = {A Model-Based Approach for Improving Reinforcement Learning Efficiency Leveraging Expert Observations},
- booktitle = {IEEE Conference on Decision and Control (CDC)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-178}
- }
,
- "A Model-Based Approach for Improving Reinforcement Learning Efficiency Leveraging Expert Observations", IEEE Conference on Decision and Control (CDC), December 2024.
-
MERL Contact:
-
Research Areas:
Abstract:
This paper investigates how to incorporate expert observations (without explicit information on expert actions) into a deep reinforcement learning setting to improve sample efficiency. First, we formulate an augmented policy loss combining a maximum entropy reinforcement learning objective with a behavioral cloning loss that leverages a forward dynamics model. Then, we propose an algorithm that automatically adjusts the weights of each component in the augmented loss function. Experiments on a variety of continuous control tasks demonstrate that the proposed algorithm outperforms various benchmarks by effectively utilizing available expert observations.