TR2025-079
TuneComp: Joint Fine-Tuning and Compression for Large Foundation Models
-
- "TuneComp: Joint Fine-Tuning and Compression for Large Foundation Models", IEEE Conference on Computer Vision and Pattern Recognition (CVPR) workshop on Efficient and On-Device Generation, June 2025.BibTeX TR2025-079 PDF
- @inproceedings{Chen2025jun,
- author = {Chen, Xiangyu and Liu, Jing and Wang, Ye and Brand, Matthew and Wang, Pu and Koike-Akino, Toshiaki},
- title = {{TuneComp: Joint Fine-Tuning and Compression for Large Foundation Models}},
- booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR) workshop on Efficient and On-Device Generation},
- year = 2025,
- month = jun,
- url = {https://www.merl.com/publications/TR2025-079}
- }
,
- "TuneComp: Joint Fine-Tuning and Compression for Large Foundation Models", IEEE Conference on Computer Vision and Pattern Recognition (CVPR) workshop on Efficient and On-Device Generation, June 2025.
-
MERL Contacts:
-
Research Areas:
Abstract:
o reduce model size during post-training, compression methods, including knowledge distillation, low-rank approximation, and pruning, are often applied after fine- tuning the model. However, sequential fine-tuning and compression sacrifices performance, while creating a larger than necessary model as an intermediate step. In this work, we aim to reduce this gap, by directly constructing a smaller model while guided by the downstream task. We propose to jointly fine-tune and compress the model by gradually distilling it to a pruned low-rank structure. Experiments demonstrate that joint fine-tuning and compression significantly outperforms other sequential compression methods.
Related Publication
BibTeX arXiv
- @article{Chen2025may2,
- author = {Chen, Xiangyu and Liu, Jing and Wang, Ye and Brand, Matthew and Wang, Pu and Koike-Akino, Toshiaki},
- title = {{TuneComp: Joint Fine-tuning and Compression for Large Foundation Models}},
- journal = {arXiv},
- year = 2025,
- month = may,
- url = {https://arxiv.org/abs/2505.21835}
- }