- Date: July 10, 2024 - July 12, 2024
Where: Toronto, Canada
MERL Contacts: Ankush Chakrabarty; Vedang M. Deshpande; Stefano Di Cairano; Christopher R. Laughman; Arvind Raghunathan; Abraham P. Vinod; Yebin Wang; Avishai Weiss
Research Areas: Artificial Intelligence, Control, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, Robotics
Brief - MERL researchers presented 9 papers at the recently concluded American Control Conference (ACC) 2024 in Toronto, Canada. The papers covered a wide range of topics including data-driven spatial monitoring using heterogenous robots, aircraft approach management near airports, computation fluid dynamics-based motion planning for drones facing winds, trajectory planning for coordinated monitoring using a team of drones and a ground carrier vehicle, ensemble Kalman smoothing-based model predictive control for motion planning for autonomous vehicles, system identification for Lithium-ion batteries, physics-constrained deep Kalman filters for vapor compression systems, switched reference governors for constrained systems, and distributed road-map monitoring using onboard sensors.
As a sponsor of the conference, MERL maintained a booth for open discussions with researchers and students, and hosted a special session to discuss highlights of MERL research and work philosophy.
In addition, Abraham Vinod served as a panelist at the Student Networking Event at the conference. The student networking event provides an opportunity for all interested students to network with professionals working in industry, academia, and national laboratories during a structured event, and encourages their continued participation as the future leaders in the field.
-
- Date: May 13, 2024 - May 17, 2024
Where: Yokohama, Japan
MERL Contacts: Anoop Cherian; Radu Corcodel; Stefano Di Cairano; Chiori Hori; Siddarth Jain; Devesh K. Jha; Jonathan Le Roux; Diego Romeres; William S. Yerazunis
Research Areas: Artificial Intelligence, Machine Learning, Optimization, Robotics, Speech & Audio
Brief - MERL made significant contributions to both the organization and the technical program of the International Conference on Robotics and Automation (ICRA) 2024, which was held in Yokohama, Japan from May 13th to May 17th.
MERL was a Bronze sponsor of the conference, and exhibited a live robotic demonstration, which attracted a large audience. The demonstration showcased an Autonomous Robotic Assembly technology executed on MELCO's Assista robot arm and was the collaborative effort of the Optimization and Robotics Team together with the Advanced Technology department at Mitsubishi Electric.
MERL researchers from the Optimization and Robotics, Speech & Audio, and Control for Autonomy teams also presented 8 papers and 2 invited talks covering topics on robotic assembly, applications of LLMs to robotics, human robot interaction, safe and robust path planning for autonomous drones, transfer learning, perception and tactile sensing.
-
- Date: April 9, 2024
MERL Contact: Diego Romeres
Research Areas: Artificial Intelligence, Dynamical Systems, Machine Learning, Optimization, Robotics
Brief - Diego Romeres, Principal Research Scientist and Team Leader in the Optimization and Robotics Team, was invited to speak as a guest lecturer in the seminar series on "AI in Action" in the Department of Management and Engineering, at the University of Padua.
The talk, entitled "Machine Learning for Robotics and Automation" described MERL's recent research on machine learning and model-based reinforcement learning applied to robotics and automation.
-
- Date: April 12, 2024
MERL Contact: Saviz Mowlavi
Research Areas: Control, Dynamical Systems, Machine Learning, Optimization
Brief - Saviz Mowlavi was invited to present remotely at the Computational and Applied Mathematics seminar series in the Department of Mathematics at North Carolina State University.
The talk, entitled "Model-based and data-driven prediction and control of spatio-temporal systems", described the use of temporal smoothness to regularize the training of fast surrogate models for PDEs, user-friendly methods for PDE-constrained optimization, and efficient strategies for learning feedback controllers for PDEs.
-
- Date: March 20, 2024
Where: Austin, TX
MERL Contact: Ankush Chakrabarty
Research Areas: Artificial Intelligence, Control, Data Analytics, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization
Brief - Ankush Chakrabarty, Principal Research Scientist in the Multiphysical Systems Team, was invited to speak as a guest lecturer in the seminar series on "Occupant-Centric Grid Interactive Buildings" in the Department of Civil, Architectural and Environmental Engineering (CAEE) at the University of Texas at Austin.
The talk, entitled "Deep Generative Networks and Fine-Tuning for Net-Zero Energy Buildings" described lessons learned from MERL's recent research on generative models for building simulation and control, along with meta-learning for on-the-fly fine-tuning to adapt and optimize energy expenditure.
-
- Date: November 14, 2023
Where: Istanbul, Turkey
MERL Contact: Ankush Chakrabarty
Research Areas: Control, Data Analytics, Machine Learning, Multi-Physical Modeling, Optimization
Brief - Ankush Chakrabarty, Principal Research Scientist in the Multiphysical Systems team at MERL, served as Co-Chair at the 3rd ACM International Workshop on Big Data and Machine Learning for Smart Buildings and Cities (BALANCES'23). The workshop places spotlights on two different IEA EBC Annexes: the Annex 81 - Data-Driven Smart Buildings and Annex 82 - Energy Flexible Buildings Towards Resilient Low Carbon Energy Systems.
-
- Date & Time: Wednesday, September 27, 2023; 1:00 PM
Speaker: Zac Manchester, Carnegie Mellon University
MERL Host: Devesh K. Jha
Research Areas: Optimization, Robotics
Abstract - Contact interactions are pervasive in key real-world robotic tasks like manipulation and walking. However, the non-smooth dynamics associated with impacts and friction remain challenging to model, and motion planning and control algorithms that can fluently and efficiently reason about contact remain elusive. In this talk, I will share recent work from my research group that takes an “optimization-first” approach to these challenges: collision detection, physics, motion planning, and control are all posed as constrained optimization problems. We then build a set of algorithmic and numerical tools that allow us to flexibly compose these optimization sub-problems to solve complex robotics problems involving discontinuous, unplanned, and uncertain contact mechanics.
-
- Date & Time: Tuesday, September 19, 2023; 1:00 PM
Speaker: Faruque Hasan, Texas A&M University
MERL Host: Scott A. Bortoff
Research Areas: Applied Physics, Machine Learning, Multi-Physical Modeling, Optimization
Abstract - Carbon capture, utilization, and storage (CCUS) is a promising pathway to decarbonize fossil-based power and industrial sectors and is a bridging technology for a sustainable transition to a net-zero emission energy future. This talk aims to provide an overview of design and optimization of CCUS systems. I will also attempt to give a brief perspective on emerging interests in process systems engineering research (e.g., systems integration, multiscale modeling, strategic planning, and optimization under uncertainty). The purpose is not to cover all aspects of PSE research for CCUS but rather to foster discussion by presenting some plausible future directions and ideas.
-
- Date: July 9, 2023 - July 14, 2023
MERL Contacts: Scott A. Bortoff; Ankush Chakrabarty; Stefano Di Cairano; Christopher R. Laughman; Diego Romeres; Abraham P. Vinod
Research Areas: Control, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, Robotics
Brief - MERL researchers presented 9 papers and organized 2 invited/workshop sessions at the 2023 IFAC World Congress held in Yokohama, JP.
MERL's contributions covered topics including decision-making for autonomous vehicles, statistical and learning-based estimation for GNSS and energy systems, impedance control for delta robots, learning for system identification of rigid body dynamics and time-varying systems, and meta-learning for deep state-space modeling using data from similar systems. The invited session (MERL co-organizer: Ankush Chakrabarty) was on the topic of “Estimation and observer design: theory and applications” and the workshop (MERL co-organizer: Karl Berntorp) was on “Gaussian Process Learning for Systems and Control”.
-
- Date: June 8, 2023
Where: Zoom
MERL Contact: Abraham P. Vinod
Research Areas: Artificial Intelligence, Control, Dynamical Systems, Optimization, Robotics
Brief - Abraham Vinod gave an invited talk at the Electrical and Computer Engineering Department, the University of California Santa Cruz, titled "Motion Planning under Constraints and Uncertainty using Data and Reachability". His presentation covered recent work on fast and safe motion planners that can allow for coordination among agents, mitigate uncertainty arising from sensing limitations and simplified models, and tolerate the possibility of failures.
-
- Date: June 30, 2023 - June 2, 2023
Where: San Diego, CA
MERL Contact: Ankush Chakrabarty
Research Areas: Applied Physics, Artificial Intelligence, Control, Data Analytics, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, Robotics
Brief - Ankush Chakrabarty (researcher, Multiphysical Systems Team) co-organized and spoke at 3 sessions at the 2023 American Control Conference in San Diego, CA. These include: (1) A tutorial session (w/ Stefano Di Cairano) on "Physics Informed Machine Learning for Modeling and Control": an effort with contributions from multiple academic institutes and US research labs; (2) An invited session on "Energy Efficiency in Smart Buildings and Cities" in which his paper (w/ Chris Laughman) on "Local Search Region Constrained Bayesian Optimization for Performance Optimization of Vapor Compression Systems" was nominated for Best Energy Systems Paper Award; and, (3) A special session on Diversity, Equity, and Inclusion to improve recruitment and retention of underrepresented groups in STEM research.
-
- Date: June 2, 2023
Awarded to: Yuki Shirai, Devesh Jha, Arvind Raghunathan and Dennis Hong
MERL Contacts: Devesh K. Jha; Arvind Raghunathan; Yuki Shirai
Research Areas: Artificial Intelligence, Optimization, Robotics
Brief - MERL's paper titled: "Closed-Loop Tactile Controller for Tool Manipulation" Won the Best Poster Award in the workshop on "Embracing contacts : Making robots physically interact with our world". First author and MERL intern, Yuki Shirai, was presented with the award at a ceremony held at ICRA in London. MERL researchers Devesh Jha, Principal Research Scientist, and Arvind Raghunathan, Senior Principal Research Scientist and Senior Team Leader as well as Prof. Dennis Hong of University of California, Los Angeles are also coauthors.
The paper presents a technique to manipulate an object using a tool in a closed-loop fashion using vision-based tactile sensors. More information about the workshop and the various speakers can be found here https://sites.google.com/view/icra2023embracingcontacts/home.
-
- Date: June 1, 2023
Where: San Diego, CA
MERL Contact: Abraham P. Vinod
Research Areas: Control, Optimization
Brief - The student networking event provides an opportunity for all interested students attending American Control Conference 2023 to receive career advice from professionals working in industry, academia, and national laboratories during a structured event. The event aims to provide an engaging experience to students that illustrates the benefits of involvement in the control community and encourage their continued participation as the future leaders in the field.
-
- Date: May 31, 2023 - June 2, 2023
Where: San Diego, CA
MERL Contacts: Ankush Chakrabarty; Vedang M. Deshpande; Stefano Di Cairano; Devesh K. Jha; Christopher R. Laughman; Arvind Raghunathan; Diego Romeres; Abraham P. Vinod; Yebin Wang; Avishai Weiss
Research Areas: Control, Machine Learning, Optimization
Brief - MERL will present 10 papers at the American Control Conference (ACC) in San Diego, CA, with topics including autonomous-vehicle decision making and control, physics-informed machine learning, motion planning, control subject to nonconvex chance constraints, and optimal power management. Two talks are part of tutorial sessions.
MERL will also be present at the conference as a sponsor, with a booth for discussing with researchers and students, and hosting a special session at lunch with highlights of MERL research and work philosophy.
-
- Date: May 31, 2023 - June 3, 2023
Where: 2023 SIAM Conference on Optimization
MERL Contacts: Devesh K. Jha; Arvind Raghunathan
Research Areas: Control, Optimization, Robotics
Brief - Arvind Raghunathan, Senior Team Leader and Senior Principal Research Scientist in Optimization & Intelligent Robotics team, will organize two minisymposia at the 2023 SIAM Conference on Optimization to be held in Seattle from May 31 to June 3. The two minisymposia titled "Optimization in Control – Algorithms, Applications, and Software" and "New Algorithmic Techniques for Global Optimization" will feature twelve invited speakers from academia and national labs.
Additionally, Arvind together with Devesh Jha, Principal Research Scientist in Optimization & Intelligent Robotics Team, and collaborators will present five invited talks covering the topics of algorithms for convex programs, multilinear programs, mixed-integer nonlinear programs, and robotics.
See:
https://meetings.siam.org/sess/dsp_programsess.cfm?SESSIONCODE=76268
https://meetings.siam.org/sess/dsp_programsess.cfm?SESSIONCODE=76269
https://meetings.siam.org/sess/dsp_programsess.cfm?SESSIONCODE=76270
https://meetings.siam.org/sess/dsp_programsess.cfm?SESSIONCODE=76256
https://meetings.siam.org/sess/dsp_programsess.cfm?SESSIONCODE=75897
-
- Date: May 29, 2023 - June 2, 2023
Where: 2023 IEEE International Conference on Robotics and Automation (ICRA)
MERL Contacts: Anoop Cherian; Radu Corcodel; Siddarth Jain; Devesh K. Jha; Toshiaki Koike-Akino; Tim K. Marks; Daniel N. Nikovski; Arvind Raghunathan; Diego Romeres
Research Areas: Computer Vision, Machine Learning, Optimization, Robotics
Brief - MERL researchers will present thirteen papers, including eight main conference papers and five workshop papers, at the 2023 IEEE International Conference on Robotics and Automation (ICRA) to be held in London, UK from May 29 to June 2. ICRA is one of the largest and most prestigious conferences in the robotics community. The papers cover a broad set of topics in Robotics including estimation, manipulation, vision-based object recognition and segmentation, tactile estimation and tool manipulation, robotic food handling, robot skill learning, and model-based reinforcement learning.
In addition to the paper presentations, MERL robotics researchers will also host an exhibition booth and look forward to discussing our research with visitors.
-
- Date: May 15, 2023 - May 18, 2023
Where: San Francisco, CA
MERL Contacts: Dehong Liu; Bingnan Wang
Research Areas: Applied Physics, Control, Electric Systems, Machine Learning, Optimization, Signal Processing
Brief - MERL researchers Yusuke Sakamoto, Anantaram Varatharajan, and
Bingnan Wang presented four papers at IEMDC 2023 held May 15-18 in San Francisco, CA. The topics of the four oral presentations range from electric machine design optimization, to fault detection and sensorless control. Bingnan Wang organized a special session at the conference entitled: Learning-based Electric Machine Design and Optimization. Bingnan Wang and Yusuke Sakamoto together chaired the special session, as well as a session on: Condition Monitoring, Fault Diagnosis and Prognosis.
The 14th IEEE International Electric Machines and Drives Conference: IEMDC 2023, is one of the major conferences in the area of electric machines and drives. The conference was established in 1997 and has taken place every two years thereafter.
-
- Date: April 30, 2023
MERL Contact: Arvind Raghunathan
Research Area: Optimization
Brief - Arvind Raghunathan, Senior Team Leader and Senior Principal Research Scientist with Optimization and Intelligent Robotics team, will serve as the Chair of The 2022 Howard Rosenbrock Prize Committee. Every year, Optimization and Engineering (OPTE) journal honors excellence in scientific research by presenting the Rosenbrock Prize to the best paper published in the previous year. The prize recognizes outstanding research contributions that demonstrate Howard Rosenbrock’s own dedication to bridging the gap between optimization and engineering.
-
- Date & Time: Tuesday, April 11, 2023; 11:00 AM
Speaker: Michael Muehlebach, Max Planck Institute for Intelligent Systems
Research Areas: Control, Dynamical Systems, Machine Learning, Optimization, Robotics
Abstract - The talk will be divided into two parts. The first part of the talk introduces a class of first-order methods for constrained optimization that are based on an analogy to non-smooth dynamical systems. The key underlying idea is to express constraints in terms of velocities instead of positions, which has the algorithmic consequence that optimizations over feasible sets at each iteration are replaced with optimizations over local, sparse convex approximations. This results is a simplified suite of algorithms and an expanded range of possible applications in machine learning. In the second part of my talk, I will present a robot learning algorithm for trajectory tracking. The method incorporates prior knowledge about the system dynamics and by optimizing over feedforward actions, the risk of instability during deployment is mitigated. The algorithm will be evaluated on a ping-pong playing robot that is actuated by soft pneumatic muscles.
-
- Date: August 27, 2024 - August 30, 2024
Where: Kyoto, Japan
Research Areas: Control, Machine Learning, Multi-Physical Modeling, Optimization, Robotics
Brief - MERL researcher Rien Quirynen has been appointed as Vice-Chair from Industry of the International Program Committee of the 8th IFAC Conference on Nonlinear Model Predictive Control, which will be held in Kyoto, Japan, in August 2024.
IFAC NMPC is the main symposium focused on model predictive control, theory, methods and applications, includes contributions on control, optimization, and machine learning research, and is held every 3 years.
-
- Date: December 9, 2022 - December 11, 2022
MERL Contact: Yebin Wang
Research Areas: Communications, Control, Optimization
Brief - Future factory, in the era of industry 4.0, is characterized by autonomy, digital twin, and mass customization. This talk, titled "Future factory automation and cyber-physical system: an industrial perspective," focuses on tackling the challenges arising from mass customization, for example reconfigurable machine controller and material flow.
-
- Date: December 8, 2022
Awarded to: Arvind Raghunathan
MERL Contact: Arvind Raghunathan
Research Areas: Control, Optimization
Brief - Arvind Raghunathan, Senior Principal Research Scientist in the Data Analytics group, received the IEEE Control Systems Society Roberto Tempo Best CDC Paper Award. The award was presented at the 2022 IEEE Conference on Decision & Control (CDC).
The award is given annually in honor of Roberto Tempo, the 44th President of the IEEE Control Systems Society (CSS). The Tempo Award Committee selects the best paper from the previous year's CDC based on originality, potential impact on any aspect of control theory, technology, or implementation, and for the clarity of writing. This year's award committee was headed by Prof. Patrizio Colaneri, Politecnico di Milano. Arvind's paper was nominated for the award by Prof. Lorenz Biegler, Carnegie Mellon University, with supporting letters from Prof. Andreas Waechter, Northwestern University, and Prof. Victor Zavala, University of Wisconsin-Madison.
-
- Date: December 6, 2022 - December 9, 2022
Where: Cancún, Mexico
MERL Contacts: Ankush Chakrabarty; Devesh K. Jha; Arvind Raghunathan; Diego Romeres; Yebin Wang
Research Areas: Control, Optimization
Brief - MERL researchers presented six papers at the Conference on Decision and Control that was held in Cancún, Mexico from December 6-9, 2022. The papers covered a broad range of topics in the areas of decision making and control, including Bayesian optimization, quadratic programming, solution of differential equations, distributed Kalman filtering, thermal monitoring of batteries, and closed-loop control optimization.
-
- Date & Time: Monday, December 12, 2022; 1:00pm-5:30pm ET
Location: Mitsubishi Electric Research Laboratories (MERL)/Virtual
Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Digital Video
Brief - Join MERL's virtual open house on December 12th, 2022! Featuring a keynote, live sessions, research area booths, and opportunities to interact with our research team. Discover who we are and what we do, and learn about internship and employment opportunities.
-
- Date: November 14, 2022
Where: Zoom
Research Areas: Control, Dynamical Systems, Optimization, Robotics
Brief - Rien Quirynen will give an invited talk at the Electrical and Computer Engineering Department, University of California Santa Cruz on "Real-time Motion Planning and Predictive Control by Mixed-integer Programming for Autonomous Vehicles". The talk will present recent work on a tailored branch-and-bound method for real-time motion planning and decision making on embedded processing units, and recent results for two applications related to automated driving and traffic control.
-