- Date: December 10, 2024 - December 15, 2024
Where: Advances in Neural Processing Systems (NeurIPS)
MERL Contacts: Petros T. Boufounos; Matthew Brand; Ankush Chakrabarty; Anoop Cherian; François Germain; Toshiaki Koike-Akino; Christopher R. Laughman; Jonathan Le Roux; Jing Liu; Suhas Lohit; Tim K. Marks; Yoshiki Masuyama; Kieran Parsons; Kuan-Chuan Peng; Diego Romeres; Pu (Perry) Wang; Ye Wang; Gordon Wichern
Research Areas: Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Human-Computer Interaction, Information Security
Brief - MERL researchers will attend and present the following papers at the 2024 Advances in Neural Processing Systems (NeurIPS) Conference and Workshops.
1. "RETR: Multi-View Radar Detection Transformer for Indoor Perception" by Ryoma Yataka (Mitsubishi Electric), Adriano Cardace (Bologna University), Perry Wang (Mitsubishi Electric Research Laboratories), Petros Boufounos (Mitsubishi Electric Research Laboratories), Ryuhei Takahashi (Mitsubishi Electric). Main Conference. https://neurips.cc/virtual/2024/poster/95530
2. "Evaluating Large Vision-and-Language Models on Children's Mathematical Olympiads" by Anoop Cherian (Mitsubishi Electric Research Laboratories), Kuan-Chuan Peng (Mitsubishi Electric Research Laboratories), Suhas Lohit (Mitsubishi Electric Research Laboratories), Joanna Matthiesen (Math Kangaroo USA), Kevin Smith (Massachusetts Institute of Technology), Josh Tenenbaum (Massachusetts Institute of Technology). Main Conference, Datasets and Benchmarks track. https://neurips.cc/virtual/2024/poster/97639
3. "Probabilistic Forecasting for Building Energy Systems: Are Time-Series Foundation Models The Answer?" by Young-Jin Park (Massachusetts Institute of Technology), Jing Liu (Mitsubishi Electric Research Laboratories), François G Germain (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Gordon Wichern (Mitsubishi Electric Research Laboratories), Navid Azizan (Massachusetts Institute of Technology), Christopher R. Laughman (Mitsubishi Electric Research Laboratories), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories). Time Series in the Age of Large Models Workshop.
4. "Forget to Flourish: Leveraging Model-Unlearning on Pretrained Language Models for Privacy Leakage" by Md Rafi Ur Rashid (Penn State University), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Shagufta Mehnaz (Penn State University), Ye Wang (Mitsubishi Electric Research Laboratories). Workshop on Red Teaming GenAI: What Can We Learn from Adversaries?
5. "Spatially-Aware Losses for Enhanced Neural Acoustic Fields" by Christopher Ick (New York University), Gordon Wichern (Mitsubishi Electric Research Laboratories), Yoshiki Masuyama (Mitsubishi Electric Research Laboratories), François G Germain (Mitsubishi Electric Research Laboratories), Jonathan Le Roux (Mitsubishi Electric Research Laboratories). Audio Imagination Workshop.
6. "FV-NeRV: Neural Compression for Free Viewpoint Videos" by Sorachi Kato (Osaka University), Takuya Fujihashi (Osaka University), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Takashi Watanabe (Osaka University). Machine Learning and Compression Workshop.
7. "GPT Sonography: Hand Gesture Decoding from Forearm Ultrasound Images via VLM" by Keshav Bimbraw (Worcester Polytechnic Institute), Ye Wang (Mitsubishi Electric Research Laboratories), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories). AIM-FM: Advancements In Medical Foundation Models: Explainability, Robustness, Security, and Beyond Workshop.
8. "Smoothed Embeddings for Robust Language Models" by Hase Ryo (Mitsubishi Electric), Md Rafi Ur Rashid (Penn State University), Ashley Lewis (Ohio State University), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Kieran Parsons (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories). Safe Generative AI Workshop.
9. "Slaying the HyDRA: Parameter-Efficient Hyper Networks with Low-Displacement Rank Adaptation" by Xiangyu Chen (University of Kansas), Ye Wang (Mitsubishi Electric Research Laboratories), Matthew Brand (Mitsubishi Electric Research Laboratories), Pu Wang (Mitsubishi Electric Research Laboratories), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories). Workshop on Adaptive Foundation Models.
10. "Preference-based Multi-Objective Bayesian Optimization with Gradients" by Joshua Hang Sai Ip (University of California Berkeley), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories), Ali Mesbah (University of California Berkeley), Diego Romeres (Mitsubishi Electric Research Laboratories). Workshop on Bayesian Decision-Making and Uncertainty. Lightning talk spotlight.
11. "TR-BEACON: Shedding Light on Efficient Behavior Discovery in High-Dimensions with Trust-Region-based Bayesian Novelty Search" by Wei-Ting Tang (Ohio State University), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories), Joel A. Paulson (Ohio State University). Workshop on Bayesian Decision-Making and Uncertainty.
12. "MEL-PETs Joint-Context Attack for the NeurIPS 2024 LLM Privacy Challenge Red Team Track" by Ye Wang (Mitsubishi Electric Research Laboratories), Tsunato Nakai (Mitsubishi Electric), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Kento Oonishi (Mitsubishi Electric), Takuya Higashi (Mitsubishi Electric). LLM Privacy Challenge. Special Award for Practical Attack.
13. "MEL-PETs Defense for the NeurIPS 2024 LLM Privacy Challenge Blue Team Track" by Jing Liu (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Tsunato Nakai (Mitsubishi Electric), Kento Oonishi (Mitsubishi Electric), Takuya Higashi (Mitsubishi Electric). LLM Privacy Challenge. Won 3rd Place Award.
MERL members also contributed to the organization of the Multimodal Algorithmic Reasoning (MAR) Workshop (https://marworkshop.github.io/neurips24/). Organizers: Anoop Cherian (Mitsubishi Electric Research Laboratories), Kuan-Chuan Peng (Mitsubishi Electric Research Laboratories), Suhas Lohit (Mitsubishi Electric Research Laboratories), Honglu Zhou (Salesforce Research), Kevin Smith (Massachusetts Institute of Technology), Tim K. Marks (Mitsubishi Electric Research Laboratories), Juan Carlos Niebles (Salesforce AI Research), Petar Veličković (Google DeepMind).
-
- Date: July 10, 2024 - July 12, 2024
Where: Toronto, Canada
MERL Contacts: Ankush Chakrabarty; Vedang M. Deshpande; Stefano Di Cairano; Christopher R. Laughman; Arvind Raghunathan; Abraham P. Vinod; Yebin Wang; Avishai Weiss
Research Areas: Artificial Intelligence, Control, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, Robotics
Brief - MERL researchers presented 9 papers at the recently concluded American Control Conference (ACC) 2024 in Toronto, Canada. The papers covered a wide range of topics including data-driven spatial monitoring using heterogenous robots, aircraft approach management near airports, computation fluid dynamics-based motion planning for drones facing winds, trajectory planning for coordinated monitoring using a team of drones and a ground carrier vehicle, ensemble Kalman smoothing-based model predictive control for motion planning for autonomous vehicles, system identification for Lithium-ion batteries, physics-constrained deep Kalman filters for vapor compression systems, switched reference governors for constrained systems, and distributed road-map monitoring using onboard sensors.
As a sponsor of the conference, MERL maintained a booth for open discussions with researchers and students, and hosted a special session to discuss highlights of MERL research and work philosophy.
In addition, Abraham Vinod served as a panelist at the Student Networking Event at the conference. The student networking event provides an opportunity for all interested students to network with professionals working in industry, academia, and national laboratories during a structured event, and encourages their continued participation as the future leaders in the field.
-
- Date: July 9, 2023 - July 14, 2023
MERL Contacts: Scott A. Bortoff; Ankush Chakrabarty; Stefano Di Cairano; Christopher R. Laughman; Diego Romeres; Abraham P. Vinod
Research Areas: Control, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, Robotics
Brief - MERL researchers presented 9 papers and organized 2 invited/workshop sessions at the 2023 IFAC World Congress held in Yokohama, JP.
MERL's contributions covered topics including decision-making for autonomous vehicles, statistical and learning-based estimation for GNSS and energy systems, impedance control for delta robots, learning for system identification of rigid body dynamics and time-varying systems, and meta-learning for deep state-space modeling using data from similar systems. The invited session (MERL co-organizer: Ankush Chakrabarty) was on the topic of “Estimation and observer design: theory and applications” and the workshop (MERL co-organizer: Karl Berntorp) was on “Gaussian Process Learning for Systems and Control”.
-
- Date: May 31, 2023 - June 2, 2023
Where: San Diego, CA
MERL Contacts: Ankush Chakrabarty; Vedang M. Deshpande; Stefano Di Cairano; Devesh K. Jha; Christopher R. Laughman; Arvind Raghunathan; Diego Romeres; Abraham P. Vinod; Yebin Wang; Avishai Weiss
Research Areas: Control, Machine Learning, Optimization
Brief - MERL will present 10 papers at the American Control Conference (ACC) in San Diego, CA, with topics including autonomous-vehicle decision making and control, physics-informed machine learning, motion planning, control subject to nonconvex chance constraints, and optimal power management. Two talks are part of tutorial sessions.
MERL will also be present at the conference as a sponsor, with a booth for discussing with researchers and students, and hosting a special session at lunch with highlights of MERL research and work philosophy.
-
- Date: February 16, 2023 - February 17, 2023
Where: Pennsylvania State University
MERL Contact: Christopher R. Laughman
Research Areas: Control, Machine Learning, Multi-Physical Modeling
Brief - On February 16 and 17, Chris Laughman, Senior Team Leader of the Multiphysical Systems Team, presented lectures for the Systems, Robotics, and Controls Seminar Series in the School of Engineering, and for the Distinguished Speaker Series in Architectural Engineering. His talk was titled "Architectural Thermofluid Systems: Next-Generation Challenges and Opportunities," and described characteristics of these systems that require specific attention in model-based system engineering processes, as well as MERL research to address these challenges.
-
- Date: October 26, 2022 - October 28, 2022
Where: American Modelica Conference 2022
MERL Contacts: Scott A. Bortoff; Christopher R. Laughman
Research Area: Multi-Physical Modeling
Brief - MERL researchers provided some key contributions to the 2022 American Modelica Conference, held October 26-28 at the University of Texas, Dallas. Chris Laughman, Senior Team Leader, Multiphysical Systems, was the Executive Coordinator of the conference, and worked to plan and stage the event. Scott A. Bortoff, Chief Scientist, gave a keynote address entitled "Sustainable HVAC: Research Opportunities for Modelicans." The talk posed the question: What are the modeling and control research challenges that, if addressed, will drive meaningful innovation in sustainable building HVAC systems in the next 20 years? In addition, the paper "Performance Enhancements for Zero-Flow Simulation of Vapor Compression Cycles," by Principal Research Scientist Hongtao Qiao and Chris Laughman, was a finalist for the conference Best Paper Award.
-
- Date: June 8, 2022
Where: 2022 American Control Conference
MERL Contacts: Ankush Chakrabarty; Christopher R. Laughman
Research Areas: Control, Machine Learning, Multi-Physical Modeling, Optimization
Brief - Researchers from EPFL (Wenjie Xu, Colin Jones) and EMPA (Bratislav Svetozarevic), in collaboration with MERL researchers Ankush Chakrabarty and Chris Laughman, recently won the ASME Energy Systems Technical Committee Best Paper Award at the 2022 American Control Conference for their work on "VABO: Violation-Aware Bayesian Optimization for Closed-Loop Performance Optimization with Unmodeled Constraints" out of 19 nominations and 3 finalists. The paper describes a data-driven framework for optimizing the performance of constrained control systems by systematically re-evaluating how cautiously/aggressively one should explore the search space to avoid sustained, large-magnitude constraint violations while tolerating small violations, and demonstrates these methods on a physics-based model of a vapor compression cycle.
-
- Date: June 8, 2022 - June 10, 2022
Where: Atlanta, GA
MERL Contacts: Scott A. Bortoff; Ankush Chakrabarty; Stefano Di Cairano; Christopher R. Laughman; Abraham P. Vinod; Avishai Weiss
Research Areas: Control, Machine Learning, Optimization
Brief - At the American Control Conference in Atlanta, GA, MERL presented 9 papers on subjects including autonomous-vehicle decision making and motion planning, realtime Bayesian inference and learning, reference governors for hybrid systems, Bayesian optimization, and nonlinear control.
-
- Date & Time: Thursday, May 7, 2020; 12:00 PM
Speaker: Christopher Rackauckas, MIT
MERL Host: Christopher R. Laughman
Research Areas: Machine Learning, Multi-Physical Modeling, Optimization
Abstract - In the context of science, the well-known adage "a picture is worth a thousand words" might well be "a model is worth a thousand datasets." Scientific models, such as Newtonian physics or biological gene regulatory networks, are human-driven simplifications of complex phenomena that serve as surrogates for the countless experiments that validated the models. Recently, machine learning has been able to overcome the inaccuracies of approximate modeling by directly learning the entire set of nonlinear interactions from data. However, without any predetermined structure from the scientific basis behind the problem, machine learning approaches are flexible but data-expensive, requiring large databases of homogeneous labeled training data. A central challenge is reco nciling data that is at odds with simplified models without requiring "big data". In this talk we discuss a new methodology, universal differential equations (UDEs), which augment scientific models with machine-learnable structures for scientifically-based learning. We show how UDEs can be utilized to discover previously unknown governing equations, accurately extrapolate beyond the original data, and accelerate model simulation, all in a time and data-efficient manner. This advance is coupled with open-source software that allows for training UDEs which incorporate physical constraints, delayed interactions, implicitly-defined events, and intrinsic stochasticity in the model. Our examples show how a diverse set of computationally-difficult modeling issues across scientific disciplines, from automatically discovering biological mechanisms to accelerating climate simulations by 15,000x, can be handled by training UDEs.
-
- Date: June 25, 2019 - June 28, 2019
Where: Naples, Italy
MERL Contacts: Scott A. Bortoff; Ankush Chakrabarty; Stefano Di Cairano; Devesh K. Jha; Christopher R. Laughman; Daniel N. Nikovski; Diego Romeres; William S. Yerazunis
Research Areas: Control, Machine Learning, Optimization
Brief - The European Control Conference is the premier control conference in Europe. This year MERL was well represented with papers on control for HVAC, machine learning for estimation and control, robot assembly, and optimization methods for control.
-
- Date: October 11, 2018
MERL Contact: Christopher R. Laughman
Research Area: Multi-Physical Modeling
Brief - A new approach to heat management in compact fusion reactors that emerged from a class at MIT, developed by graduate student Adam Kuang and 14 other MIT students, engineers from Commonwealth Fusion Systems as well as Piyush Grover and Chris Laughman from MERL, and Professor Dennis Whyte, was recently published in Fusion Engineering and Design. This solution was made possible by an innovative approach to compact fusion reactors, using high-temperature superconducting magnets. This method formed the basis for a massive new research program launched this year at MIT and the creation of an independent startup company to develop the concept. The new design, unlike that of typical fusion plants, would make it possible to open the device's internal chamber and replace critical components; this capability is essential for the newly proposed heat-draining mechanism.
In the one-semester graduate class 22.63 (Principles of Fusion Engineering), students were divided into teams to address different aspects of the heat rejection challenge. These teams evaluated alternate concepts and subjected candidate designs to detailed calculations and simulations based, in part, on data from decades of research on research fusion devices such as MIT's Alcator C-Mod, which was retired two years ago. C-Mod scientist Brian LaBombard also shared insights on new kinds of divertors, and two engineers from MERL worked with the team as well. Several of the students continued working on the project after the class ended, ultimately leading to the solution described in this new paper.
-
- Date & Time: Monday, October 8, 2018 - Thursday, October 11, 2018; 8am-5pm
Location: MIT Samberg Conference Center, Cambridge, MA
MERL Contact: Christopher R. Laughman
Research Areas: Control, Multi-Physical Modeling
Brief - The 2018 American Modelica Conference, the first North American conference focused on the Modelica multiphysics modeling language, will be held on Tuesday and Wednesday, October 9-10, 2018 at the Samberg Conference Center at MIT in Cambridge, MA. Chris Laughman, a team leader in the Multiphysical Systems and Devices group, is the local chair for the conference.
This conference will feature over 40 papers and user presentations on the Modelica language and its application to a wide variety of problem domains, including thermofluid, aerospace, automotive, and energy systems. There will also be 2 keynote addresses by John McKibben (Proctor & Gamble) and Hilding Elmqvist (Mogram AB). Nearly 100 attendees from 11 different countries have already registered for the conference, and it promises to be a very educational experience.
MERL is also hosting two free workshops on October 8 to provide opportunities to engineers looking to increase their familiarity with the language and its applications. An introductory workshop will be led by engineers from Modelon during that morning, and then a second workshop on the application of Modelica to building systems will be led by Michael Wetter from Lawrence Berkeley National Labs in the afternoon. MERL will also host a Modelica user meeting on October 11 that will provide more details and discussion about trends in the use and development of Modelica in the larger engineering community.
-
- Date: July 6, 2016 - July 8, 2016
Where: American Control Conference (ACC)
MERL Contacts: Scott A. Bortoff; Petros T. Boufounos; Stefano Di Cairano; Abraham Goldsmith; Christopher R. Laughman; Daniel N. Nikovski; Arvind Raghunathan; Yebin Wang; Avishai Weiss
Research Areas: Control, Dynamical Systems, Machine Learning
Brief - The premier American Control Conference (ACC) takes place in Boston July 6-8. This year MERL researchers will present a record 20 papers(!) at ACC, with several contributions, especially in autonomous vehicle path planning and in Model Predictive Control (MPC) theory and applications, including manufacturing machines, electric motors, satellite station keeping, and HVAC. Other important themes developed in MERL's presentations concern adaptation, learning, and optimization in control systems.
-
- Date: November 11, 2015 - November 12, 2015
Where: University of Connecticut
MERL Contacts: Christopher R. Laughman; Scott A. Bortoff; Hongtao Qiao
Research Area: Data Analytics
Brief - MERL Researchers Scott A. Bortoff, Chris Laughman and Hongtao Qiao attended the North America Modelica User's Group Meeting, hosted by the University of Connecticut, November 11-12, 2015. Scott Bortoff gave the Keynote Address entitled "Using Modelica in Industrial Research and Development," and Chris Laughman and Hongtao Qiao each presented a paper on modelling of HVAC systems. The Meeting attracted approximately 80 Modelica users from a diverse set of companies and universities including United Technologies, Johnson Controls and Ford. Use of Modelica is accelerating in North America, lead by largely by automotive and similar "systems manufacturing" type companies.
-
- Date: Friday, November 6, 2015
Location: Mitsubishi Electric Cooling & Heating
MERL Contact: Christopher R. Laughman
Research Area: Data Analytics
Brief - Chris Laughman of MERL and Kevin Miskewicz of MEUS-HVAC led a webinar on Friday, November 6 with over 20 leading HVAC industry trade publications on new products that are being released, as well as the role that MERL plays in advancing the forefront of technology within Mitsubishi Electric. Titled "Inventing the Future of VRF (and Other Neat Stuff)", they discussed the innovations embodied in the new L-generation City-Multi system, as well as trends in the HVAC industry and some recently published MERL research in the HVAC area.
-
- Date: September 21, 2015
MERL Contacts: Scott A. Bortoff; Christopher R. Laughman Brief - MERL researchers Scott Bortoff, Dan Burns and Chris Laughman attended the 11th Annual Modelica Conference in Versailles, France. Modelica is a computer language for modelling and simulation of multiphysical systems. There were 421 attendees, with representatives from Toyota, automobile companies, European universities and companies like Dassault. Conference topics included a plenary on cyber-physical systems modelling by Prof. Sangiovanni Vincentelli of UC Berkeley, new libraries for modelling HVAC systems, automobile systems and buildings, and research results for new solvers. An important trend is virtual modelling and simulation of building thermodynamics (scaling up to city districts), automotive systems (autonomous vehicles), and especially Factory Automation: Dassault is investing heavily in this area, focusing on smaller customers, with tools for 3D virtual modelling of assembly lines including machine dynamics (robotics), and in partnerships with Siemens and other European FA companies.
-
- Date & Time: Wednesday, May 8, 2013; 12:00 PM
Speaker: Vikrant Aute, University of Maryland
MERL Host: Christopher R. Laughman
Research Area: Data Analytics
Abstract - Heat exchangers are a key component in any air-conditioning, heat pumping and refrigeration system. These heat exchangers (aka evaporators, condensers, indoor units, outdoor units) not only contribute significantly to the total cost of the system but also contain the most refrigerant charge. There is a continued interest in improving the designs of heat exchangers and making them more compact while reducing the cost. Compact heat exchangers help improve system performance, reduce power consumption and lower the first costs. Due to the lower internal volume, they hold lower refrigerant charge which in turn results in lower environmental impact.
In the simulation based design and optimization of compact heat exchangers, there are two main challenges. The first challenge arises from the use of computationally expensive analysis tools such as Computational Fluid Dynamics (CFD). The second challenge is the effect of scales. The use of CFD tools can make the optimization infeasible due to computing and engineering resource limitations. Furthermore, during CFD analysis, certain simplifications are made to the computational domain such as simulating a small periodic segment of a given heat transfer surface. In this talk, three technologies are introduced that assist in addressing these issues. These technologies are (1) Approximation Assisted Optimization, (2) Parallel Parameterized CFD, and (3) Multi-scale modeling of heat exchangers. These technologies together help reduce the computational effort by more than 90% and engineering time by more than 50%. Two real world applications focusing on air-to-refrigerant and liquid-to-refrigerant heat exchangers will be discussed, that demonstrate the application of these technologies.
-
- Date: July 16, 2012
Where: International Refrigeration and Air conditioning Conference at Purdue
MERL Contacts: Christopher R. Laughman; Daniel N. Nikovski Brief - The papers "Fast Refrigerant Property Calculations Using Interpolation-Based Methods" by Laughman, C.R., Zhao, Y. and Nikovski, D. and "Extremum Seeking Control for Energy Optimization of Vapor Compression Systems" by Burns, D.J. and Laughman, C. were presented at the International Refrigeration and Air conditioning Conference at Purdue.
-
- Date: April 19, 2010
Where: International Conference Power Electronics, Machines and Drives (PEMD)
MERL Contact: Christopher R. Laughman
Research Area: Data Analytics
Brief - The paper "A Park Transform-Based Method for Condition Monitoring of Three-Phase Electromechanical Systems" by Laughman, C.R., Leeb, S.B., Norford, L.K., Shaw, S.R. and Armstrong, P.R. was presented at the International Conference Power Electronics, Machines and Drives (PEMD).
-
- Date: September 20, 2009
Where: IEEE Energy Conversion Congress and Exposition (ECCE)
MERL Contact: Christopher R. Laughman
Research Area: Data Analytics
Brief - The paper "A Two-Step Method for Estimating the Parameters of Induction Machine Models" by Laughman, C.R., Leeb, S.B., Norford, L.K., Shaw, S.R. and Armstrong, P.R. was presented at the IEEE Energy Conversion Congress and Exposition (ECCE).
-